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2. Streszczenie 

 

terenach miejsk

Sciurus vulgaris. Wiedza 

  

a 

cztery i sezonowa, 

2) kondycja zdrowotna i aktywno  

szereg 

z  

 

 

rezerwacie m 

 

y  
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wieloma aspektami  te zamieszk

a te z parku miejskiego, 

odmiennie

czasu potrzebnego na znalezienie 

 przez 

mic 

w poziomie 

owiskowych (m.in.. pogody, pory 

kontakt  

k miejski 

obszar  

  

 

Sciurus vulgaris  
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3. English summary 

 

Urbanization highly affects the environment, and animals living in urban areas encounter 

conditions that may differ from rural habitats. One of the species that has adjusted to these 

specific conditions and can reach high population density is the red squirrel Sciurus 

vulgaris. Knowledge of how wildlife cope with this anthropogenic disturbance is still 

scarce. In this thesis, consisting of a series of papers, two populations of red squirrels 

inhabiting utterly different habitats are compared. One population lived in an urban park 

in a city centre 

and tourists, and squirrels have access to supplementary feeding throughout the year. The 

second population lived in an urban forest reserve 

is closed to the public and located in a suburban area. This thesis consists of four papers, 

in which, among others, I compared 1) daily and seasonal activity, 2) body condition and 

sexual activity, 3) reaction to stress, and 4) level of intoxication by heavy metal (mercury). 

A number of differences between both populations were found. Daily and seasonal 

activity patterns differed: in the urban forest, activity patterns were similar to rural 

populations, with two activity peaks (one after sunrise and a second before sunset); in the 

urban park, squirrels presented mostly one peak of activity (which started after sunrise 

and lasted until the afternoon). Differences in body condition and sexual activity were 

also shown: squirrels from the park had lower body mass and worse body condition. At 

the same time, more sexually active females and more juveniles were observed there. In 

contrast, there were no differences in terms of stress reaction between the two 

populations, although squirrels from the urban forest showed higher reactions to stress 

during direct contact with humans (measured by breath rate). Levels of heavy metal 

(mercury) contamination in fur were influenced by study area, sex, and sex status  values 

were higher in squirrels from the urban park and sexually active females. The results 

suggest that squirrels inhabiting areas of different anthropogenic disturbances may differ 

in many aspects  those living in an urban forest are similar to populations inhabiting 

rural habitats. In contrast, those from an urban park show a number of changes. Animals 

from the park probably have modified their diurnal activity to adjust to the presence of 

humans visiting the park, which increases the chances of obtaining food and, 

simultaneously, reduces the time needed to find enough food. Differences in body weight 

and fitness may be due to high competition between individuals in a high-density 

population (i.e., urban park). On the other hand, stable access to supplemental food 
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throughout the year may reduce the importance of fat reserves for survival and 

reproductive success. Food availability may also result in more sexually active females 

and potentially positively affect reproduction. The lack of differences in reactions to 

stress indicates that both populations are similarly subject to environmental stressors (e.g., 

weather, season), and the reduced response to direct contact with humans of park squirrels 

may be due to habituation to their presence. Higher heavy metal contamination may be 

due to changes in foraging patterns. The results of the studies included in the four articles 

confirm the high plasticity of red squirrels living in environments affected by 

anthropopression and the adjustment of these animals to specific urban conditions. In 

addition, the results highlight the role of urban forests as important refuges for wild 

animals, where their populations may remain relatively natural. 

 

 

Keywords: body mass, daily activity, condition, environmental disturbances, hormone 

stress metabolites, seasonal activity, Sciurus vulgaris, stress, urbanization. 
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4.   

 

(Grimm i in. 2008; Johnson i Munshi-South 2017; McDonald i in. 

2019) dekad 

w kolejnych latach wzrost liczby ludzi  

(Li i in. 2021)

a ich ekspansja powoduje m.in.  (Birnie-Gauvin i in. 2016; Alberti i in. 2017; 

McDonald i in. 2019) e 

specyficznymi warunkami miejskimi

biologicznej (McDonald i in. 2019; i in. 2019). Zmiany wprowadzone przez 

 populacje i/lub osobniki

 

(Sweet i in. 2022), 

(Kight i Swaddle 2011; 

Francis i Barber 2013) z kolei powoduje zmiany w 

(Ciach i 

 Hoffmann i in. 2019), (Longcore i 

Rich 2004; Gaston i in. 2014)

kolizji 

(Fahrig 2003; Johnson i Munshi-South 2017; 

Seiler i Bhardwaj 2020). 

rodzaju zanieczyszczenia (Murray i in. 2019), 

(Dietz i 

in. 2006; Poissant i in. 2008; Dietz, Outridge, i Hobson 2009; Rea i in. 2013; Herring, 

Eagles-Smith, i Varland 2018; Dietz i in. 2022). T

 (Serieys i in. 2018). 

Dodatkowo choroby i 

na terenach zurbanizowanych (Bradley i 
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Altizer 2007; Oro i in. 2013), 

 (Birnie-Gauvin i in. 2016). 

- -Kozica i in. 

-Carrasco i in. 2020).  

 (Jakubiak i Klich 

2021). 

 i in. 2014; Droste i in. 2018), co 

(Bateman i Fleming 2012). 

(Dominoni i in. 2013), a  zimu bez 

podejmowania migracji sezonowej (Partecke i Gwinner 2007). Ponadto zabudowania 

oraz inne konstrukcje  dodatkowe 

schronienie (Herr i in. 2010; Lowry i in. 2013). liczba naturalnych 

  (Shochat i in. 2006), 

, np. koty (Felis catus) i in. 2017). 

Pokarm  

 (Bateman i Fleming 2012; Lowry i in. 

2013), np. czy 

(Oro i in. i in. 2019). w miastach 

 (McCleery 2009). 

(Uchida i in. 2019). Z drugiej strony jednak rodzaju 

 

 

 

czasowej (Lepczyk i in. 2017). 

w 

(McDonnell i Hahs 2015), 

(ang. urban ecology
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o

 (Ouyang i in. 2018). Lepsze 

 pozwala na 

pod i miejskiej i 

ochrony przyrody. 

Sciurus vulgaris 

i in. 2014; Fey i in. 2016; Reher i 

in. 2016; Haigh i in. 2017; Uchida i in. 2019; Kostrzewa i Krauze-Gryz 2020; Krauze-

Gryz i in. 2021aa,b)  (Bosch i Lurz 2012), tereny 

tego gatunku (Joki i in. 2017; 

Fingland i in. 2022)

(Fingland i in. 2022). 

ki 

 i in. 2018; Krauze-Gryz i in. 

2021a) i in. 2018), 

(Krauze-Gryz i in. 2021a,b). 

 (Bosch i Lurz 2012; Krauze-Gryz i Gryz 2015; 

Reher i in. 2016; Thomas i in. 2018; Kostrzewa i Krauze-Gryz 2020; Krauze-Gryz i in. 

2021a). 

rezerwat 

niewielka.  

(Krauze-Gryz i in. 2021a,b). 

 

str  
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5.  

 

1) 

 

ograniczona,  w jego 

 

 

2) gdzie 

D

 

 

3) 

 tzw. 

poziom zaniepokojenia, ang. struggle rate

 

 

4) 
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6.  

 

Badania prowadzone  

 

w 2022 roku  (https://www.pot.gov.pl/). Park zajmuje 

-

Werka i . -Werka i 

ab (Carpinus betulus

 (Quercus robur), buk (Fagus sylvatica Corylus 

avellana Juglans regia) oraz orzech czarny (Juglans nigra) -

Werka i .   ptaki i 

om 

oraz .  

 

10 km od centrum Warszawy. Rezerwat , a jego 

p

 

,  (Fraxinus 

excelsior)  pospolity (Ulmus minor), leszczyna oraz olsza czarna (Alnus glutinosa). 

 

Strix aluco, Gryz, Krauze i 

oraz krogulce (Accipiter nissus, Gryz J. os. obs.). Stwierdzono 

Accipiter genitilis 

(Gryz J. os. obs.). Z kolei n

Corvus corone) oraz gawrony (Corvus frugilegus) 



18 
 

(Beliniak i Krauze-Gryz 2024). 

pospolitego (Vulpes vulpes) (Jackowiak i in. 2021)  (Martes foina) (Krauze-

Gryz D., o

(Jankowska 2021).  

./ha oraz na 0,29 os./ha na terenie 

rezerwatu (Krauze-Gryz i in. 2021a). 

Na obszarze parku miejskiego i rezerwatu  

od lipca 2018 do 

wykorzystywane 

 a 

  

owami 

.. Po tym tygodniowym , 

prowadzone 

godziny 6-7 rano, sprawdzane po 2-

, 

wska zaniepokojenia . Przez 30 sekund mierzono czas, 

niespokojnie w worku. 

  do , gdzie dokonywano 

pomiaru liczby gdzie  w 

czterostopniowej skali. 

mm, National Tag&Band, Newport, KY, USA). Mierzona 

do 10 Pesola). Dodatkowo, , 

 

(Wauters i Dhondt 1995). Oceniana 

Santicchia i in. 2018) y wiek 

 i  (Wauters i Dhondt 1993). W 

Zbierane odchody 
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pozostawione w klatce  Eppendorf 

przeanalizowane w laboratorium w 

hormo  

dobowej 

jako liczba obserwacji  Acorn 6210MC/MG, 

one 

-

L  

Pozwolenie na w

-

I.6205.124.2018.AS i WPN-

adami oraz 

Etycznej (WAW2/072/2018). 

 

Badawczy. 

-Gryz D. 2022. 

Body Condition and Breeding of Urban Red Squirrels: Comparison of Two Populations 

Affected by Different Levels of Urbanization. Animals, 12(23): 3246. 

https://doi.org/10.3390/ani12233246. by

SGGW.  

-Gryz D. 2024. Long-term, medium-

term and acute stress response of urban populations of Eurasian red squirrels affected by 

different levels of human disturbance. PLoS ONE. 

Mi
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7.  

 
 

 

 

Beliniak A., Krauze- Contrast in daily 

activity patterns of red squirrels inhabiting urban park and urban forest. Hystrix, the 

Italian Journal of Mammalogy, 32(2):159 164. https://doi.org/10.4404/hystrix-00476-

2021. 

 

miejskim w odpowiedzi n

 (Krauze-Gryz i in. 2021a). Na tej podstawie 

  typowy dla gatunku w warunkach 

naturalnych

badawczy 

dobowej 

, tzn. 

  

zachodem (wie

gniazdach) (Tonkin 1983; Wauters i Dhondt 1987, 1992). Osobniki z parku natomiast 

pojedynczy 
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typowo dzienne ich 

 (Wauters i Dhondt 1992), jednak k , 

aktywne  przed wschodem a nawet  (Wauters i Dhondt 1987). 

o w przypadku 

 

sprzeczna ze znanym z literatury wzorcem 

 

(Wauters i Dhondt 1987). 

Przypuszczalnie 

artykule wykazano odmienne wzorce 

 przez ludzi. 

 

, Sciurus vulgaris  
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 urbanizacji 

 

-Gryz D. 2022. Body Condition and 

Breeding of Urban Red Squirrels: Comparison of Two Populations Affected by Different 

Levels of Urbanization. Animals, 12(23): 3246. https://doi.org/10.3390/ani12233246. 

 

W 

z rezerwatu nie jest dokarmiana 

w   

pokarmu W celu sprawdzenia tej 

hipotezy w 

 .  4-

dniowych sesji . W 

  liczba 

 129 , minimum 1, maksimum 

2,44 razy, 

 

  parku 

, 

o 1,05-1,89 

os./ha, w rezerwacie 0,2-0,28 os./ha). Z drugiej strony, 

nie jest tak istotne. Prawdopodobnie 



23 
 

  

 (Wauters i in. 2007). 

pokarmu (Klenner i Krebs 1991; Shuttleworth 2000; Magris i Gurnell 2002). 

 (Wauters i Dhondt 1989). 

 w

 (Wauters i Dhondt 1989, 1995; Wauters i in. 2007; 

Santicchia i in. 2018). 

(35%) niu do 

 (23%)

p  (Selonen i in. 2016)

(Gurnell 1983) oraz w

odczas dyspersji (Klenner i Krebs 1991). 

 

 

Sciurus 

vulgaris, zmiany sezonowe, ssaki miejskie 
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Beliniak A., Gryz J., Klich D., 

-Gryz D. 2024. Long-term, medium-term and acute stress 

response of urban populations of Eurasian red squirrels affected by different levels of 

human disturbance. PLoS ONE. https://doi.org/10.1371/journal.pone.0302933. 

 

 

w ych antropogenicznie: wysokim 

ia 2020 roku. 

hormonu stresu (kortyzolu) w odchodach (N=112). 

da  (ang. 

 

populacjami, p  (osobnik aktywny/nieaktywny) w 

 

i 

  a 

a  

 (7,178 w rezerwacie i 7,956 
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w parku)

parku), ale  danego osobnika. 

enicznymi 

- 

em (w 

zaniepokojenia 

metod analitycznych, w tym analiz behawioralnych, jest najbardziej odpowiednie przy 

dok

 

 

Sciurus vulgaris, urbanizacja, wokalizacja, 
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Jackowiak M., Krauze-  -

E., Matracka A. The heavy burden of city life: factors affecting mercury bioaccumulation 

in urban red squirrels.  

Manuskrypt w trakcie recenzji w Environmental Science and Pollution Research 

 

W ostatnim artykule z cyklu ganizmach 

parku miejskiego w Warszawie. 

Z  

osobniki 

aktywne/nieaktywne

metale 

czane do organizmu 

u 

nawane za 

Pl badania  

. 
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8.  

 
 

 
Beliniak A., Krauze- Contrast in daily 

activity patterns of red squirrels inhabiting urban park and urban forest. Hystrix, the 

Italian Journal of Mammalogy, 32(2):159 164. https://doi.org/10.4404/hystrix-00476-

2021. 
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-Gryz D. 2022. Body Condition and 

Breeding of Urban Red Squirrels: Comparison of Two Populations Affected by Different 

Levels of Urbanization. Animals, 12(23): 3246. https://doi.org/10.3390/ani12233246. 

 































B SE t p Lower CI Upper CI 

B SE t p Lower CI Upper CI 

B SE t p Exp (B) Lower CI Upper 
CI 



50 
 

 

 

-Gryz D. 2024. Long-term, medium-term and acute stress 

response of urban populations of Eurasian red squirrels affected by different levels of 

human disturbance. PLoS ONE. https://doi.org/10.1371/journal.pone.0302933. 















































Table S11.  Average values of indicators calculated from raw data for given groups 
with regard to SITE. 
 
  

URBAN FOREST 
 

URBAN PARK 
 Average Standard 

Deviation 
Average Standard 

Deviation 
Hair cortisol concentration [ug/g]   
SEASON     

SPRING 0.039 0.037 0.063 0.045 
SUMMER 0.028 0.026 0.017 0.024 
AUTUMN 0.027 0.011 0.030 0.028 

EXPERIENCE     
FIRST-TRAPPED 0.032 0.034 0.039 0.040 
RETRAPPED 0.033 0.026 0.051 0.044 

REPRODUCTIVE STATUS     
FEMALE BREEDING 0.050 0.048 0.051 0.031 
FEMALE NONBREEDING 0.024 0.019 0.035 0.033 
MALE BREEDING 0.038 0.034 0.079 0.062 
MALE NONBREEDING 0.029 0.022 0.034 0.030 

Hair cortisone concentration [ug/g] 
SEASON 

    

SPRING 0.039 0.010 0.048 0.015 
SUMMER 0.043 0.017 0.039 0.017 
AUTUMN 0.058 0.013 0.055 0.022 

EXPERIENCE     
FIRST-TRAPPED 0.047 0.019 0.052 0.019 
RETRAPPED 0.045 0.013 0.046 0.017 

REPRODUCTIVE STATUS     
FEMALE BREEDING 0.040 0.011 0.046 0.013 
FEMALE NONBREEDING 0.053 0.018 0.055 0.021 
MALE BREEDING 0.038 0.011 0.053 0.017 
MALE NONBREEDING 0.048 0.015 0.040 0.013 

Fecal cortisol concentration [ng/g]   
SEASON     

SPRING 37.60 41.19 84.09 80.32 
SUMMER 20.46 14.79 16.22 12.18 
AUTUMN 32.10 27.19 51.39 59.54 
WINTER   90.33 93.16 

EXPERIENCE     
FIRST-TRAPPED 17.38 18.01 93.10 103.45 
RETRAPPED 35.38 29.46 55.07 63.55 

REPRODUCTIVE STATUS     
FEMALE BREEDING 39.84 23.39 69.99 74.84 
FEMALE NONBREEDING 26.11 40.14 81.41 89.29 
MALE BREEDING 31.93 28.92 57.42 69.38 
MALE NONBREEDING 25.24 16.89 36.81 51.81 

   



Breath rate [chest moves/20 sec.] 
SEASON     

SPRING 29.621 5.031 26.135 3.742 
SUMMER 26.400 3.069 27.636 4.756 
AUTUMN 29.674 4.888 25.596 3.527 
WINTER 28.300 4.547 24.226 2.880 

EXPERIENCE     
FIRST-TRAPPED 30.786 5.094 26.354 3.873 
RETRAPPED 27.952 4.290 25.151 3.503 

REPRODUCTIVE STATUS     
FEMALE BREEDING 27.375 3.777 26.027 3.069 
FEMALE NONBREEDING 28.838 4.330 25.808 3.879 
MALE BREEDING 28.867 3.662 24.513 3.634 
MALE NONBREEDING 28.673 5.276 25.750 3.756 

Struggle rate [body moving time/30 sec.]     
SEASON     

SPRING 6.110 4.814 7.519 5.159 
SUMMER 5.216 3.443 6.785 4.151 
AUTUMN 8.272 5.698 7.073 6.217 
WINTER 11.46 4.487 10.45 6.334 

EXPERIENCE     
FIRST-TRAPPED 8.960 4.112 8.573 5.701 
RETRAPPED 6.598 5.319 7.595 6.097 

REPRODUCTIVE STATUS     
FEMALE BREEDING 7.598 3.437 7.544 5.851 
FEMALE NONBREEDING 7.593 5.245 7.086 5.415 
MALE BREEDING 8.941 4.425 9.727 7.288 
MALE NONBREEDING 6.365 5.390 8.047 5.626 

Vocalization [rank: 1-4]     
SEASON      

SPRING 1.667 0.959 1.593 1.002 
SUMMER 1.806 1.046 2.043 1.186 
AUTUMN 1.548 0.803 1.936 1.171 
WINTER 1.200 0.632 1.761 1.139 

EXPERIENCE     
FIRST-TRAPPED 1.500 0.793 1.573 0.999 
RETRAPPED 1.659 0.946 1.985 1.181 

REPRODUCTIVE STATUS     
FEMALE BREEDING 1.500 0.756 2.139 1.125 
FEMALE NONBREEDING 1.757 1.038 1.867 1.256 
MALE BREEDING 2.077 1.038 1.765 1.046 
MALE NONBREEDING 1.436 0.764 1.649 1.010 

 
 



Table S1.  Ranking of the models (ten highest ranked models and null model) explaining the 
long-term and medium-term stress in squirrels in generalized linear mixed models with 
gamma distribution and log link function c - AICc differences, i - Akaike weights, 
Rank - rank of the models based on AICc values; bolded text in the row indicates chosen 
model (for variable explanation, see: methods). 
 
Models  c i Rank 

Hair cortisol concentration    
SEASON + CONDITION + AGE  0.0 0.155 1 
SITE + SEASON + CONDITION + AGE 0.5 0.120 2 
SEASON + CONDITION + AGE + EXPERIENCE 1.1 0.089 3 
SITE + SEASON + CONDITION + AGE + EXPERIENCE 1.4 0.077 4 
SEASON + CONDITION 2.0 0.057 5 
SITE + CONDITION + AGE + REPRODUCTIVE ST. 2.3 0.049 6 
SEASON + CONDITION + AGE + REPRODUCTIVE ST. 2.4 0.047 7 
SEASON + AGE 3.3 0.030 8 
SITE + CONDITION + AGE + EXPERIENCE + REPRODUCTIVE ST. 3.3 0.030 9 
SEASON + CONDITION + EXPERIENCE 3.4 0.030 10 

    
null model 20.5 0.000 64 

Hair cortisone concentration    
SEASON + CONDITION  0.0 0.214 1 
SEASON  1.0 0.130 2 
SEASON + CONDITION + AGE  1.9 0.083 3 
SITE + SEASON + CONDITION  2.6 0.058 4 
SEASON + CONDITION + EXPERIENCE 2.7 0.055 5 
SITE + SEASON 3.4 0.039 6 
SEASON + EXPERIENCE 3.6 0.035 7 
SEASON + AGE 3.7 0.034 8 
CONDITION  4.0 0.029 9 
SEASON + CONDITION + EXPERIENCE + AGE 4.4 0.030 10 

    
null model 5.1 0.017 14 

Faecal cortisol concentration    
SEASON + CONDITION  0.0 0.119 1 
SITE + SEASON + CONDITION  0.1 0.114 2 
SEASON + CONDITION + AGE  0.3 0.103 3 
SITE + SEASON + CONDITION + AGE  0.5 0.093 4 
SEASON + CONDITION + EXPERIENCE 1.2 0.066 5 
SITE + SEASON + CONDITION + EXPERIENCE 1.3 0.062 6 
SEASON + CONDITION + EXPERIENCE + AGE 1.5 0.056 7 
SITE + SEASON + CONDITION + EXPERIENCE + AGE 1.6 0.054 8 
SEASON + CONDITION + REPRODUCTIVE ST. 2.8 0.029 9 
SEASON  3.0 0.027 10 

    
null model 18.6 0.000 57 

 
 



Table S3.  Indicator values (marginal averages), which are presented in figures 2-7. 
 
Figure 2 - 
means from generalized linear mixed model) [ug/g] 
SEASON Marginal mean Standard Error 

SPRING 0.03 0.03 
SUMMER 0.01 0.01 
AUTUMN 0.02 0.02 

Figure 3 - ne concentration in squirrels with regard to SEASON (marginal 
means from generalized linear mixed model) [ug/g] 
SEASON Marginal mean Standard Error 

SPRING 0.046 0.012 
SUMMER 0.041 0.012 
AUTUMN 0.057 0.012 

Figure 4 - fecal cortisol concentration in squirrels with regard to SEASON (marginal 
means from generalized linear mixed model) [ng/g] 
SEASON Marginal mean Standard Error 

SPRING 30.4 26.4 
SUMMER 16.6 14.7 
AUTUMN 32.8 29.4 
WINTER 58.6 51.5 

-trapped or 
retrapped) and B) SITE (urban park or urban forest) (marginal means from generalized linear 
mixed model). [chest moves/20 sec.] 
EXPERIENCE Marginal mean Standard Error 

FIRST-TRAPPED 28.3 2.9 
RE-TRAPPED 26.5 2.7 

SITE Marginal mean Standard Error 
URBAN PARK 25.9 2.7 
URBAN FOREST 28.9 3.0 

Figure 6. to SEASON (marginal means from 
generalized linear mixed model). [body moving time/30 sec.] 
SEASON Marginal mean Standard Error 

SPRING 8.0 4.8 
SUMMER 6.9 4.2 
AUTUMN 7.7 4.7 
WINTER 11.2 6.8 

Figure 7. EXPERIENCE (first-trapped or 
retrapped) (marginal means from generalized linear mixed model). [rank: 1-4] 
EXPERIENCE Marginal mean Standard Error 

FIRST-TRAPPED 1.5 0.6 
RE-TRAPPED 1.9 0.7 

 
 



Table S3.  Ranking of the models (ten highest ranked models and null model) explaining the 
acute stress in squirrels in generalized linear mixed models with gamma or negative binomial 
distribution and log link function c - AICc differences, i - Akaike weights, Rank - 
rank of the models based on AICc values; bolded text in the row indicates chosen model (for 
variable explanation, see: methods). 
 
Models  c i Rank 

Breath rate    
SITE + CONDITION + EXPERIENCE  0.0 0.465 1 
SITE + EXPERIENCE 1.3 0.243 2 
SITE + CONDITION 3.4 0.085 3 
SITE  3.9 0.066 4 
SITE + CONDITION + AGE + EXPERIENCE 3.9 0.066 5 
SITE + AGE + EXPERIENCE 4.6 0.047 6 
SITE + CONDITION + AGE 7.4 0.011 7 
SITE + AGE  7.6 0.010 8 
SITE + SEASON + CONDITION + EXPERIENCE 10.3 0.003 9 
SITE + SEASON + EXPERIENCE 11.3 0.002 10 

    
null model 22.2 0.000 28 

Struggle rate    
SEASON + CONDITION  0.0 0.257 1 
SEASON + CONDITION + EXPERIENCE  1.6 0.116 2 
SEASON 2.7 0.067 3 
SEASON + CONDITION + AGE 2.7 0.067 4 
SITE + SEASON + CONDITION 2.8 0.063 5 
CONDITION 3.6 0.043 6 
SEASON + CONDITION + EXPERIENCE + AGE 4.1 0.033 7 
SITE + SEASON + CONDITION + EXPERIENCE 4.4 0.028 8 
SITE + CONDITION  4.5 0.027 9 
SEASON + CONDITION + REPRODUCTIVE ST. 4.8 0.023 10 

    
null model 6.0 0.013 18 

Vocalization    
CONDITION + EXPERIENCE 0.0 0.172 1 
CONDITION  0.3 0.148 2 
CONDITION + EXPERIENCE + AGE 1.2 0.094 3 
CONDITION + AGE 1.2 0.094 4 
SITE + CONDITION + EXPERIENCE 1.6 0.077 5 
SITE + CONDITION  2.2 0.057 6 
null model 2.6 0.047 7 
SITE + CONDITION + EXPERIENCE + AGE 2.8 0.042 8 
SITE + CONDITION + AGE 3.2 0.035 9 
EXPERIENCE 3.2 0.035 10 
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ABSTRACT 34 

Mercury, together with cadmium and lead, is one of the most harmful metal contaminants, which 35 

can bioaccumulate and biomagnify. In Poland, the emission of mercury is one of the highest in 36 

Europe due to coal combustion-based power production. In this study, we focused on two 37 

populations of the red squirrel inhabiting Warsaw to assess total mercury (THg) concentrations in 38 

hair samples: the urban forest located in an outer district of Warsaw, and the urban park located in 39 

the city center. Squirrels were live-trapped, and their sex, age, and breeding status were assessed. 40 

Mercury determination was done in a laboratory by means of atomic absorption spectrometry. In 41 

general, the concentration of THg in hair samples from sub-adult individuals was lower than in 42 

adults. Yet, due to the low sample size of sub-adults, only adults were used in further analysis. The 43 

site of a sample collection, the sex of the squirrel, and their reproductive status affected the level 44 

of contamination (higher values were reported for the park and for breeding females). Body mass 45 

positively affected THg contamination in the urban park but not in the forest. The proportion of 46 

internally incorporated (ingested with food) vs. superficially adsorbed mercury was much higher 47 

in the urban park than in the urban forest. The bioaccumulation was clearly higher in the urban 48 

park than in the urban forest, which can be explained by both current and/or historical pollution 49 

but also by altered behavior of park animals as a response to the presence of humans (i.e., more 50 

time spent on the ground). We also showed that individual characteristics (i.e. sex, breeding, body 51 

mass) could affect the level of mercury intoxication. All this points to the importance of future 52 

studies on the variation in mercury concentration within mammal populations inhabiting different 53 

urban green areas. 54 

 55 

Keywords: trace element, body mass, sex and breeding activity, age, hair samples, pollution  56 
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1. INTRODUCTION 57 

Mercury, together with cadmium and lead, is one of the most harmful metal contaminants, 58 

which can bioaccumulate (e.g. Rimmer et al., 2010; Peterson et al., 2015) and biomagnify (e. g. 59 

Lavoie et al., 2013; Seco et al., 2021). For decades, environmental monitoring of mercury 60 

contamination has been one of the most important trends in environmental conservation. Mercury 61 

is emitted during various technological processes and the combustion of fossil fuels (Pirrone et al., 62 

2010). In Poland, 63 

to coal combustion-based power production and Pacyna, 2009), with particular 64 

importance of brown coal combustion et al., 2011). 65 

 Mercury occurs in an environment as metallic, inorganic, and organic forms, the last being 66 

the most toxic. Mercury can be accumulated in various environmental reservoirs (e.g., Bull et al., 67 

1977), including birds and mammals (Boening, 2000; Scheuhammer et al., 2007; Scheuhammer et 68 

al., 2015). Mercury, in its organic, bioavailable form, can be easily taken with food and effectively 69 

absorbed in the gastrointestinal tract (Wolfe et al., 1998). Mercury can also be inhaled as a vapor 70 

and, to some extent, absorbed through the skin (Wolfe et al., 1998). It readily transfers across the 71 

blood- -Berenguer et al., 2020), thus 72 

affecting behavior and cognition (Carpenter, 2001). It also interferes with enzymes, disturbing 73 

numerous biochemical pathways (Wolfe et al., 1998) and disturbing cardiovascular (Fernandes 74 

Azevedo et al., 2012) and immune systems (Das et al., 2008; Desforges et al., 2016). Mercury can 75 

cause lesions to the kidneys and liver (Sonne et al., 2007) and affects the reproductive system 76 

et al., 2020). Finally, it also penetrates the placenta (Nehring et al., 2017), selectively 77 

concentrating in the fetus's brain, affecting the fetus's development (Castoldi et al., 2008); it is also 78 
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excreted into milk and absorbed by offspring (Wagemann et al., 1988; Habran et al., 2011; 79 

et al., 2015). 80 

 The highest concentration of mercury was observed in the kidneys, liver, and muscles 81 

(Wren, 1986; Khabarova et al., 2018). However, organ sampling is invasive, thus its usability is 82 

limited. Measuring trace elements in the hairs of mammals is thought to be a simple, reliable, and 83 

minimally invasive way of assessing exposure to environmental pollution (i.e., Duffy et al., 2005; 84 

et al., 2014). Excreted trace elements are incorporated into hair (Wolfe et al., 1998; 85 

Grajewska et al., 2020), in which their concentration is proportionate (yet, generally higher) to the 86 

concentration in organs (Evans et al., 1998; Gerstenberger et al., 2006; Dainowski et al., 2015; 87 

Peterson et al., 2016a; Peterson et al., 2016b). Mercury load in hair samples corresponds well to 88 

environmental exposure to mercury (Eccles et al., 2020). Also, hair has considerable stability for 89 

long periods of time (Dietz et al., 2006; Dietz et al., 2009; Bocharova et al., 2013). 90 

As one of the most important contaminants, mercury levels were tested in many mammalian 91 

species. The most important factor shaping interspecific, spatial, and temporal mercury 92 

concentration is diet variability (Bocharova et al., 2013; Hallanger et al., 2019; but see also Lippold 93 

et al., 2022). Typically, the highest mercury levels were recorded in marine, piscivorous mammals 94 

like seals (Sergeant and Armstrong, 1973; Skaare et al., 1994) and toothed whales (Dietz et al., 95 

2013), but also other carnivores, including terrestrial apex predators like polar bear (Ursus 96 

maritimus) (Dietz et al., 2013; Lippold et al., 2022) or smaller arctic fox (Vulpes lagopus) 97 

(Bocharova et al., 2013; Treu et al., 2018), raccoon (Procyon lotor) or striped skunk (Mephitis 98 

mephitis) (Peterson et al., 2020). Most of the studies focused on mercury levels in the Arctic and 99 

marine biota, where its accumulation can be a serious ecological problem (Dietz et al., 2013; Krey 100 

et al., 2015; Dietz et al., 2021). High concentrations were noted in small insectivorous mammals 101 
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(Talmage and Walton, 1993; -Chardi et al., 2007), while the lowest values were obtained 102 

for non-insectivorous, small mammals (Bull et al., 1977; Gerstenberger et al., 2006; Lurz et al., 103 

2017) or ungulates ( et al., 1984; Gamberg et al., 2016). Mercury can be a potential threat 104 

to populations and ecosystems (Poissant et al., 2008; Dietz et al., 2013; Rea et al., 2013; Herring 105 

et al., 2018; Dietz et al., 2021; Dietz et al., 2022). Taking into account the increasing role of urban 106 

habitats for wildlife (Baker and Harris, 2007) and the potential higher exposure of wildlife to 107 

chemical contaminants in cities (Newman, 2006), the biocontamination of urban mammal 108 

populations should be monitored. Indeed, previous studies pointed to a high concentration of 109 

chemical contaminants in the tissues of urban mammals (Dip et al., 2001; Lurz et al., 2017).  110 

Squirrels (Sciuridae) may be valuable biological sentinels for environmental pollution and 111 

good indicators of mercury presence in terrestrial habitats (Gerstenberger et al., 2006; Jenkins et 112 

al., 1980; Lurz et al., 2017). Although red squirrel (Sciurus vulgaris) has been classified as a least 113 

concern (LC) species, the observed global population trend is declining (Shar et al., 2016). Thus, 114 

any new threats should be identified (Lurz et al., 2017). Moreover, red squirrel is one of the species 115 

that adjusted well to urban habitat ( et al., 2014; Reher et al., 2016; Fey et al., 2016; Uchida 116 

et al., 2019; Kostrzewa and Krauze-Gryz, 2020; D. Krauze-Gryz et al., 2021a; b; Beliniak et al., 117 

2022; Fingland et al., 2022). Its abundant presence in cities (Beliniak et al., 2022) and within areas 118 

of various anthropogenic pressure and habitat transformation -Werka and 119 

Krauze-Gryz et al., 2021a; Beliniak et al., 2022) make the red squirrel an ideal target species for 120 

studying mercury contamination in urban ecosystems. 121 

In this study, we focused on two populations of red squirrels inhabiting Warsaw to assess 122 

total mercury (THg) concentrations in hair samples. The first was an urban forest located in an 123 

outer district of the city; the other was an urban park located in the center of Warsaw. Moreover, 124 



7 
 

we compared the contribution of internally incorporated (intTHg) and externally deposited 125 

(extTHg) mercury in squirrel hair samples between both locations. As we found in our previous 126 

studies, the two populations differed (among others) in terms of body mass, reproductive activity, 127 

and food composition (Krauze-Gryz et al., 2021a; Beliniak et al., 2022), the factors that may 128 

potentially affect mercury accumulation (Mierle et al., 2000; Lodenius et al., 2014). We assumed 129 

that the Hg value in red squirrel hair would be higher in the urban park than in the urban forest, 130 

possibly due to heavy traffic and high particulate matter concentration in the city center as 131 

compared to an outer district (Majewski et al., 2011). We also predicted that higher Hg values 132 

would be recorded for females (Yates et al., 2005; McKinney et al., 2017) and in a breeding season 133 

(Lurz et al., 2017), as they are known to gnaw on bones or consume soil to obtain minerals (e.g., 134 

calcium) to satisfy the increased demand during lactation (e.g., Bosch and Lurz, 2012). As mercury 135 

bioaccumulates (e.g., Peterson et al., 2015), we may also assume that its levels will be higher in 136 

older animals (Mierle et al., 2000), and with a higher body mass (Lodenius et al., 2014). 137 

 138 

2. MATERIAL AND METHODS 139 

2.1. Study area 140 

The study was conducted on two study sides: an urban forest (Natolin Reserve) and an 141 

urban park (Royal Museum)142 

capital city of Poland. The city has approximately two million people, and it is located in the central 143 

part of the country. The main coal-fired heat plants are , Siekierki , and the smaller peaking 144 

(Fig. 1). These are characterized by relatively low emissions of mercury 145 

(as compared to others located in other parts of the country that use mainly brown coal; et 146 
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al., 2011). However, geochemical studies of soils in Warsaw parks (the urban park) showed soil 147 

enrichment in mercury (as well as other heavy metals; Dusza-Dobek, 2012). 148 

The first study site, the urban forest, was located approximately 10 km from the city center. 149 

The reserve covers 105 ha, and it has been protected since 1991. It has been closed to the public 150 

and permission is needed for an entrance. The oldest stands are more than 250 years old, dead or 151 

fallen trees are left for natural decomposition, and only natural regeneration occurs, and in practice, 152 

very little human intervention is allowed. To the west of the reserve are built-up areas, whereas on 153 

the other side, it is surrounded by farmland. The sampling site was 4.5, 14.5, and 17 km from the 154 

three power plants (Fig. 1).  155 

The second study site, the urban park, is located in the city center and covers 76 ha. This 156 

is one of the most popular attractions among local inhabitants and visitors. Busy streets and built-157 

up areas surround it. The park has more than 90 species of trees and shrubs, both natural and 158 

foreign species, and tree stands can reach more than 150 years, which provides a natural food base 159 

for animals -Werka and . Animals in this park, including red squirrels, are 160 

commonly fed by visitors (Kostrzewa and Krauze-Gryz, 2020; Krauze-Gryz et al., 2021a). 161 

Human-delivered nuts comprise the bulk of the diet of the red squirrels in this park (Krauze-Gryz 162 

et al., 2021a). The sampling site was located 4.5, 8.7, and 9 km from the main power plants (Fig. 163 

1). 164 

 165 

2.2. Sample collection 166 

Squirrels were live-trapped with 40 traps in the urban forest and 30 traps in the urban park. 167 

The study lasted from July 2018 to December 2020 (Beliniak et al., 2022). In both areas, we 168 

trapped in the same month, in total, during thirteen trapping sessions (i.e., in 2018: Jul, Sept, Nov; 169 
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in 2019: Jan, Mar, May, Jul, Sept; in 2020: Mar, May, Jul, Oct, Dec). We used standard wire mesh 170 

171 

flushed every trapped squirrel into a wire mesh handling cone (Lurz et al., 2000) to minimize stress 172 

during handling. Each newly trapped squirrel was individually marked with numbered ear tags 2x8 173 

mm (National Tag&Band, Newport, KY, USA). Squirrels were weighted to the nearest 10 g 174 

(Pesola spring balance). We also defined sex and reproductive status. Females were defined as 175 

nonbreeding (anoestrous, small vulva, no longitudinal opening) or breeding. The latter included 176 

postoestrous and pregnant (swollen vulva with longitudinal opening, enlarged belly during 177 

pregnancy) or lactating (large nipples, milk excretion could be stimulated). Males were recorded 178 

as nonbreeding (abdominal testes or semi-scrotal and scrotum small) or breeding (testes scrotal 179 

and scrotum large) (Santicchia et al., 2018). We also defined age class: sub-adult males had small 180 

scrotum and abdominal testes, females had a very small vulva, and the nipples were still invisible. 181 

Older animals were considered as adult (Wauters and Dhondt, 1993). The hair samples were 182 

collected from the coat using gloved fingers and stored in small, individually-labelled, clear plastic 183 

bags. Hair samples (5-15 mg) were taken once per trapping session, so samples collected from the 184 

same individual were at least two months apart.  185 

Samples were collected throughout the year and in all seasons. They came from both sexes. 186 

Samples from sub-adults and adults were collected in the park. Only adult individuals were 187 

sampled in the urban forest. This was due to a lower trapping rate of sub-adults in the forest 188 

(Beliniak et al., 2022). 189 

The year was divided into four seasons: spring (1st March 31st May), summer (1st June190 

31st August), autumn (1st September 30th November), and winter (1st December 28th February).  191 

 192 
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2.3. Laboratory analysis 193 

THg determination 194 

All of the collected hair samples were delivered to the laboratory, where mercury was determined 195 

using atomic absorption spectrometry. We used the device for direct mercury determination  196 

AMA-254 (Altec, Czech Republic), dedicated for THg determination. There was no need to 197 

conduct sample preparation prior to analysis because of an automatic mineralization during the 198 

process. To determine THg, a sample with a known mass was applied to the nickel nacelle on a 199 

dispenser. The dispenser placed the sample in a combustion chamber, where the sample dried and 200 

was exposed to pyrolytic mineralization in an oxygen stream at 550 C. Mercury vapor, released 201 

during decomposition, moved through the catalytic column on the gold amalgamator. After being 202 

rapidly evaporated from the amalgamator, preconcentrated mercury was measured in two 203 

measuring cells by atomic absorption technique under 254 nm UV light. The whole procedure took 204 

about five minutes. The result was THg content in a sample (in ng) and THg concentration (in 205 

ppm, for further analysis recalculated to /kg of dry weight), calculated on the basis of an 206 

absorbance calibration curve. The limit of detection for AMA-254 was 0.01 ng. 207 

Moreover, we evaluated how much mercury in a sample was an effect of atmospheric 208 

deposition (extTHg) and how much was incorporated into hair structure as a result of food intake 209 

(intTHg). Thus, for another 38 samples (urban forest  16, urban park  22), THg determination 210 

was replicated with an additional rinsing procedure. Before analysis, the replicated samples were 211 

rinsed a few times in 0.1 molar hydrochloric acid to remove unbound mercury from the hair 212 

surface. By comparing THg concentration between unrinsed and replicated, rinsed subsamples, a 213 

concentration of mercury adsorbed on hair (extTHg) for each sample was assessed. An average 214 



11 
 

percentage share of intTHg and extTHg in samples for each location separately and for both 215 

locations jointly was estimated. 216 

 217 

Quality assurance and control 218 

To ensure high repeatability, for 30 samples THg determination was replicated. With a 219 

sufficient sample volume it was separated into two subsamples. On average, the accordance 220 

between THg determination in both subsamples was 84.62%; SE=0.03 (with no difference 221 

between an urban park and urban forest  84.55%; SE=0.04 vs. 84.71%; SE=0.05, respectively). 222 

Variation of THg concentration in replicated samples fluctuated between 62.87 and 99.71%, with 223 

most of the results accordance over 90%. 224 

To maintain a high quality of research and to check the correctness of mercury 225 

determination, European Reference Material ERM-DB001, with a human hair matrix dedicated to 226 

trace elements analysis, was used. Reference material was used once per each analytical series, but 227 

at least once per 10 samples. Reference material weights were about 10 mg, where mercury 228 

concentration was homogeneous, in accordance with the certificate of analysis, and what 229 

corresponds to typical sample mass (about 5-15 mg). Recovery of the reference material ranged 230 

from 91.42% to 99.34% (mean 95.56%; SE=0.01). To ensure the proper mercury determination 231 

result, mercury in a blank sample was determined after each hair sample. An acceptable threshold 232 

for mercury value in the blank sample was below one ppb. 233 

 234 

2.4. Statistical analysis 235 

We used linear mixed-effects models to find factors affecting THg values in red squirrel 236 

hair samples. As exploratory variables, we used the site of sample collection (urban forest, urban 237 
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park), season (spring, summer, autumn, winter), sex (female, male), and interaction between sex 238 

and reproductive status (breeding, non-breeding). Next, we run two models, using the body mass 239 

of squirrels as an exploratory variable, separately for the urban forest and the urban park. As 240 

squirrels were individually marked and could be trapped (thus sampled) more than once, we used 241 

squirrel ID (individual_ID) as a random effect. As THg concentration data was not normally 242 

distributed (confirmed by the Shapiro-Wilk test), we used log-transformed (ln) data for the 243 

analysis. Akaike Information Criterion (AIC) was used to evaluate the fit of all of the models. 244 

Significant differences between intTHg and extTHg in hair samples were confirmed by using 245 

 paired t-test (significance level 0.05). 246 

All analyses were performed using R (v.4.1.2, R Core Team 2021) and the age 247 

(Bates et al., 2015). The linear mixed-effect model was fitted using the  248 

 249 

3. RESULTS 250 

The mean THg concentration in squirrel hair was 100.65 /kg (SE=8.73). The 251 

concentration of THg in hair samples from sub-adult individuals differed from adults (ONE-WAY 252 

ANOVA, F =19.3, df = 1 and 187, P < 0.001) (Fig. 2). The mean value for samples from sub-adult 253 

individuals equaled 35.27 /kg (SE=11.89) (N=12) (Table S1). In comparison, the mean value 254 

for adults was 105.08 /kg (SE=9.19) (N=177) (Table S2-S3). As the number of samples 255 

collected from sub-adult individuals was low, we used only data for adults in further analysis. 256 

Amongst five built models (including the null model), the one that included site and 257 

interaction between sex and reproductive status was selected as the best model (Table 1).  258 

The THg value was affected by the site of a sample collection, the sex of a squirrel, and 259 

reproductive status (Table 2). Higher values of THg were recorded in the urban park (mean 135.13 260 
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/kg; SE=14.19) than in the urban forest (mean 60.21 /kg; SE=5.53) (Fig. 3). Also, greater 261 

variation in THg concentration was observed in squirrels from the urban park (4.34  262 

than from the urban forest (9.07  Higher THg values were recorded in the samples 263 

collected from females during the breeding season (mean 165.63 /kg, SE=33.25), while for 264 

males, higher THg concentration was recorded during the nonbreeding period (mean 98.03 /kg; 265 

SE=13.17) (Fig. 4) (Table S2-S3).  266 

Next, we analyzed the link between the body mass of squirrels and the concentration of 267 

mercury (THg) in hair samples, separately for the urban forest and the urban park (Table 3). In the 268 

urban forest, body mass did not affect the THg value in red squirrels' hair samples, while in the 269 

urban park, the influence of body mass was significant (Table 3). In the case of park squirrels, 270 

higher THg values were recorded in hair samples from squirrels with higher body mass (Fig. 5). 271 

 There was also a difference between THg concentration in acid-rinsed and non-rinsed 272 

samples (t=4.557, df=37, p<0.001). The intTHg concentration in hair samples was, on average, 273 

46.67 ich was about 74% of the mean THg value before rinsing, which means that about 274 

a quarter of determined mercury in hair was extTHg. The extTHg and intTHg concentrations in 275 

hair samples differed significantly (t=2.881, df=37, p<0.01). Only 6% of THg in the hair sample 276 

was extTHg in squirrels from urban park, while 94% was intTHg (t=4.430, df=21, p<0.001). In 277 

the case of urban forest squirrels, the proportion between superficially adsorbed and internally 278 

incorporated THg was almost equal, with 54% of extTHg and 46% of intTHg (t=-0.788, df=15, 279 

p=0.439) (Table S4).  280 

 281 

4. DISCUSSION 282 



14 
 

 In our study, we showed differences in mercury concentration in hair samples of red 283 

squirrels inhabiting the urban forest and the urban park in Warsaw. First, we showed that mercury 284 

contamination was age and body-mass dependent. We also proved that samples from the urban 285 

park were more mercury-contaminated than the ones from the urban forest. At the same time, in 286 

the case of park squirrels, less mercury was adsorbed on the hair surface (rather than ingested) than 287 

in the case of forest squirrels. Finally, we pointed to the relationship between the breeding status 288 

of a squirrel and the mercury level in its hair sample. 289 

Diet and feeding habits are usually considered the main factors shaping differences in intra- 290 

or interspecific mercury concentration. Although some individuals of red squirrels in our study 291 

had high mercury levels (about 800 /kg), the mean value was about 120 /kg, which was 292 

similar to the results obtained in a recent pilot study carried out in different study areas (including 293 

Warsaw), and the species in general (Lurz et al., 2017). For grey squirrels (Sciurus carolinensis) 294 

in urban habitats, mercury values in hair samples were higher, on average about 1000 /kg 295 

(Jenkins et al., 1980). The mercury levels obtained in hair samples in our study were similar to 296 

values obtained in other studies and locations for (mostly) herbivorous small mammals, e.g., the 297 

bank vole (Myodes glareolus) or the wood mouse (Apodemus sylvaticus) (Bull et al., 1977) or a 298 

few North American species (Gerstenberger et al., 2006). They also resembled levels obtained for 299 

some large, strictly herbivorous mammals like the reindeer et al., 1984; Gamberg et al., 300 

2016) or were higher than those noted for the moose or the red deer (Cervus elaphus) ( et 301 

al., 1984). Nevertheless, the aforementioned studies were based on liver samples, and the values 302 

for hair samples can be higher due to mercury excretion. In turn, in comparison to mostly or strictly 303 

carnivorous species like the Arctic fox, the American mink, the river otter, and the polar bear 304 

(Yates et al., 2005; Bocharova et al., 2013; Lippold et al., 2022) or insectivorous like shrews 305 
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(Talmage and -Chardi et al., 2007) mercury levels obtained in our study 306 

were quite low. The mostly herbivorous diet of red squirrels can probably explain moderate 307 

mercury levels in both populations studied in Warsaw. However, we found that park squirrels had 308 

over two times higher concentrations of mercury than forest squirrels. In comparison, in 309 

Jacksonville, USA, the mercury levels of grey squirrels were similar over the urban area (Jenkins 310 

et al., 1980). In our case, the food composition of the two populations was different. In essence, 311 

park squirrels were supplementarily fed with nuts (walnuts and hazelnuts, provided by park 312 

visitors). In contrast, only natural seeds occurred in a diet of forest squirrels (Krauze-Gryz et al., 313 

2021a). Because mercury levels in nuts and seeds are typically low (Rodushkin et al., 2008), the 314 

diet variation is probably not responsible for observed differences. On the other hand, differences 315 

in mercury concentration may be explained by the variation in food selection by certain individuals 316 

(Krauze-Gryz et al., 2021b) rather than the whole population. Also, local differences in mercury 317 

emission or environmental pollution may explain variations in mercury contamination (Lurz et al., 318 

2017). Elevated mercury concentration in mammals could also be related to the distance from the 319 

emission sources (Talmage and Walton, 1993). In our study, the urban forest was located at a 320 

greater distance from two (out of three) emission sources than the urban park. Additionally, earlier 321 

studies showed a high variation of metal concentration (including mercury) in the soils of Warsaw 322 

(Tomassi-Morawiec, 2016). In detail, there was a significant soil enrichment in mercury in the 323 

geochemical background of 324 

mercury in Poland (Dusza-Dobek, 2012). Thus, high levels of soil mercury in the park could 325 

explain higher levels of mercury in park squirrels, due to the bioaccumulation from plants to 326 

animals. 327 
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It is not clear how squirrels acquire mercury in an urban environment (Jenkins et al., 1980); 328 

however, our comparison of acid-rinsed and non-rinsed hair samples showed a significant 329 

difference between internal (i.e., digested with food) and external mercury concentration in hair, 330 

but depending on the location. A higher share of internal mercury in the hair of urban park squirrels 331 

points to greater food than atmospheric exposure. This again points to the influence of elevated 332 

levels of mercury in soils (and, as a consequence, in plants and seeds, the food sources for squirrels) 333 

of the urban park on the variation in mercury concentration between the two populations. An 334 

important factor in shaping differences between the internal and external distribution of mercury 335 

in hair can be the behavior of squirrels in the two locations. In general, forest squirrels were mainly 336 

arboreal as compared to park squirrels that spent much time on the ground (Krauze-Gryz et al., 337 

2021b). Squirrels that moved mostly in the crowns of the trees and brushed against tree leaves can 338 

be more exposed to atmospheric mercury deposition, which is finally deposited on the hair surface, 339 

as leaves keep a significant part of atmospheric contaminants (see Lohr and Pearson-Mims, 1996; 340 

Morani et al., 2011; Simon et al., 2014).  341 

Mercury concentrations in our study were also dependent on body mass, age, sex, and 342 

reproductive status. In our previous paper, we showed that squirrels inhabiting the urban forest 343 

were heavier and had better body condition than those in the park (Beliniak et al., 2022). In general, 344 

mercury concentration can increase with body mass and individual age (Lodenius et al., 2014). 345 

Thus, we may assume that mercury concentration should increase with the age and body mass of 346 

a squirrel. Nevertheless, this association does not have to be so straightforward (Lodenius et al., 347 

2014; Gamberg et al., 2016; McKinney et al., 2017). Mercury can be redistributed in organisms, 348 

leading to changes in its concentration in various tissues, e.g., being released to the blood system 349 

when fat reserves are being used. Low body mass may also be due to a high concentration of 350 
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pollutants in the body (Bremle et al., 1997; McKinney et al., 2017). In our case, the body mass of 351 

squirrels was rather stable over a year (Beliniak et al., 2022), and a clear positive correlation 352 

between body mass and hair mercury concentration was recorded for the urban park squirrels, 353 

while in the urban forest squirrels body mass did not affect mercury levels. There is no clear reason 354 

why the relationship between body weight and mercury content should be different in the two 355 

cases. However, this suggests that in the case of park squirrels, mercury is mostly ingested with 356 

food. The high content of external mercury (i.e., deposited on hair) in forest squirrels can disguise 357 

any interaction between body mass and mercury concentration. Interestingly, the season of sample 358 

collection did not affect mercury concentration in hair. In the winter season, due to intensive 359 

combustion processes, mercury emission increases (Zielonka et al., 2005), so higher mercury 360 

concentration in hair molted in spring can be expected. Nevertheless, the molting pattern in 361 

squirrels is quite variable. It depends on age, sex, reproductive activity, and condition (Bosch and 362 

Lurz, 2012), which may explain this lack of relation between the season and mercury level. 363 

Despite a small number of hair samples from sub-adults, we clearly showed lower mercury 364 

concentration in younger individuals than in adult ones. As mercury accumulates in tissues, a 365 

longer time of individual exposition results in a growing concentration in time. Such differences 366 

in mercury concentration between adults and juveniles were already reported in, e.g., grey squirrels 367 

(Jenkins et al., 1980), Arctic foxes Vulpes lagopus (Bocharova et al., 2013) or European otters 368 

Lutra lutra (Yates et al., 2005; Lodenius et al., 2014).  369 

In many studies, sex did not play a significant role in shaping mercury levels (Yates et al., 370 

2005; Gerstenberger et al., 2006; Bocharova et al., 2013; Lodenius et al., 2014), Nevertheless, in 371 

some studies (but see Lodenius et al., 2014) females had higher mercury concentrations than males 372 

(Gamberg et al., 2005; Yates et al., 2005; et al., 2015; Lurz et al., 2017; McKinney et 373 
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al., 2017), even independently from their reproductive status (McKinney et al., 2017). This pattern 374 

corresponds to our result, where females were much more exposed to mercury. In the case of 375 

Warsaw squirrels, the highest mercury levels were recorded for pregnant or lactating females. It 376 

could be the result of higher nutritional needs during these periods, resulting in much intense 377 

foraging and gnawing on bones or consuming soil to obtain minerals (Bosch and Lurz, 2012). In 378 

the American minks (Neogale vison), higher mean mercury values in females probably reflected 379 

greater food consumption by females (Gamberg et al., 2005). A high concentration of mercury in 380 

pregnant and lactating females can be worrisome. Although lactation is thought to be the main 381 

exposure route, also a prominent part of transferred mercury is transported to offspring during the 382 

gestation period (Habran et al., et al., 2015; Grajewska et al., 2019).  383 

 384 

5. CONCLUSIONS 385 

Urban-dwelling mammals face numerous threats like habitat fragmentation, limited natural 386 

resources, or environmental pollutants. In turn, these novel habitats may offer numerous 387 

anthropogenic shelters or food sources. In this study, we compared the two populations inhabiting 388 

the same city but areas under various anthropogenic pressures. The difference between the levels 389 

of contamination between the two squirrel populations was significant. Nevertheless, the sources 390 

of mercury were probably both current and/or historical pollution, and the level at which it 391 

potentially affected the two populations was also different. It is not clear why the bioaccumulation 392 

was clearly higher in the urban park than in the urban forest. The factors could be attributed to the 393 

altered behavior of animals in response to the presence of humans (i.e., time spent on the ground 394 

or within the tree crowns). We also showed that individual characteristics could affect the level of 395 

mercury. All this points to the importance of future studies on the variation in mercury 396 
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concentrations within mammal populations inhabiting different urban green areas. Our results 397 

suggest that mercury remains a problem, not only for marine fauna but also for terrestrial 398 

organisms, and should still be monitored. Moreover, further studies should consider the importance 399 

of mercury exposition to populations and the functioning of the terrestrial food web. 400 

 401 

  402 
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FIGURES AND TABLES 699 

 700 

 701 

Figure 1. Study areas: 1. an urban forest (Natolin Forest Reserve) and 2. an urban park (Royal 702 

in Warsaw, where red squirrels were live-trapped and their hair samples 703 

collected. Red dots show the locations of the main power plants. 704 

  705 
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 706 

 707 

Figure 2. Differences in THg ( /kg) concentration in hair samples (blue dot stands for mean) 708 

between adult and sub-adult red squirrels in Warsaw (samples from an urban forest and an urban 709 

park pooled together).  710 
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 711 

Fig. 3. Differences in THg ( /kg) concentration in hair samples (blue dot stands for mean) of 712 

red squirrels in an urban forest and an urban park in Warsaw. As no sub-adults were sampled in 713 

the forest, only adult individuals were taken into analysis.  714 
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 715 

 716 

Fig. 4. Differences in THg ( /kg) concentration in hair samples (blue dot stands for mean) of 717 

adult female and male red squirrels during breeding and non-breeding period, collected in 718 

Warsaw (samples from an urban forest and an urban park pooled together).  719 
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 720 

721 

squirrels collected in the urban forest and the urban park in Warsaw (samples from females and 722 

males pooled together), as predicted by models summarized in Table 3.  723 
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Table 1. Akaike Information Criterion (AIC) for linear mixed-effects models analyzing factors 724 

affecting THg ( /kg) values in red squirrel hair samples from the two sites: an urban forest and 725 

an urban park in Warsaw 726 

Model AIC 

site + sex*reproductive status + (1|individual_ID) 464.95 

site + sex*reproductive status + season + (1|individual_ID) 470.64 

site +(1|individual_ID) 471.01 

site + sex + (1|individual_ID) 473.69 

Null model 473.99 

  727 
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Table 2. Effects of a site, sex, and breeding condition on THg concentration values in hair samples 728 

from the two sites: an urban forest and an urban park in Warsaw. The intercept stands for the urban 729 

forest, female, and breeding period. 730 

variables estimate (SE) t value p-value 

Intercept  4.3878 (0.24) 18.527 <0.001 

site: urban park 0.4464 (0.18) 2.451 0.015 

sex: male -0.6653 (0.27) -2.434 0.016 

activity: nonbreeding -0.4497 (0.21) -2.115 0.036 

male*nonbreeding 0.6909 (0.29) 2.396 0.018 

  731 
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Table 3. Relationship between body mass of adult red squirrels (females and males pooled 732 

together) and concentration of THg in hair samples collected in two sites in Warsaw: an urban 733 

park and an urban forest. 734 

study site variables 
estimate 

(SE) 
t value p-value 

urban forest 

Intercept 
3.4131 

(1.060) 
3.221 0.002 

body mass 
0.0014 

(0.001) 
0.471 0.639 

urban park 

Intercept 
-0.1270 

(1.078) 
-0.118 0.906 

body mass 
0.0133 

(0.003) 
4.237 <0.001 

 735 
 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
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Table S1. THg values in hair samples of sub-adult red squirrels collected in the urban park in 

Warsaw, n.d.  no data 

season sex N samples 
 

min max mean 

spring female 2 2.24 53.04 27.64 

summer female 1 35.27 35.27 35.27 

summer male 2 4.51 23.85 14.18 

autumn female 2 10.77 13.68 12.23 

autumn male 3 6.04 146.10 53.50 

winter female 2 54.01 65.34 59.68 

 

  



Table S2. THg values in hair samples of adult red squirrels collected in the urban park in 

Warsaw, n.d.  no data  

season sex reproductive status N samples 
 

min max mean 

spring female breeding 12 27.25 776.50 222.35 

spring female non-breeding 4 14.09 189.60 88.18 

spring male breeding 8 4.34 322.45 103.74 

spring male non-breeding 20 21.36 464.10 95.74 

summer female breeding 1 197.40 197.40 197.40 

summer female non-breeding 1 51.88 51.88 51.88 

summer male non-breeding 9 8.59 321.90 109.62 

autumn female breeding 3 28.12 234.70 99.74 

autumn female non-breeding 16 4.84 524.50 113.38 

autumn male breeding 1 132.80 132.80 132.80 

autumn male non-breeding 5 16.76 398.45 109.59 

autumn male n.d. 1 17.65 17.65 17.65 

winter female breeding 3 90.81 198.60 153.77 

winter female non-breeding 7 21.45 674.00 208.23 

winter male breeding 6 16.64 134.80 76.57 

winter male non-breeding 9 34.31 531.10 236.93 

 

  



Table S3. THg values in hair samples of adult red squirrels collected in the urban forest in 

Warsaw, n.d.  no data 

season sex reproductive status N samples 
 

min max mean 

spring female breeding 5 28.25 176.40 94.83 

spring female non-breeding 3 39.51 97.40 66.82 

spring male breeding 10 20.81 72.54 39.73 

spring male non-breeding 13 31.81 106.90 62.48 

spring male n.d. 2 33.95 102.80 68.38 

summer female breeding 1 40.41 40.41 40.41 

summer female non-breeding 4 16.49 71.32 46.58 

summer male non-breeding 11 24.40 63.01 45.41 

autumn female non-breeding 9 18.51 330.00 94.39 

autumn male breeding 1 80.49 80.49 80.49 

autumn male non-breeding 5 9.07 84.02 47.97 

winter female non-breeding 5 18.09 141.85 47.40 

winter male non-breeding 2 54.90 66.15 60.53 

 

  



Table S4. THg, intTHg and extTHg values in hair samples of red squirrels collected in urban 

park and urban forest in Warsaw 

locatio

n 

N 

samples 

 int  ext  

min max mean min max mean min max mean 

urban 

park 
22 16.76 

239.5

0 
84.61 4.08 

192.8

0 
64.55 0.13 

137.8

0 

20.0

6 

urban 

forest 
16 27.93 

102.8

0 
55.11 6.90 48.42 22.09 4.10 78.01 

33.0

3 

 

 

 

 

 

 



123 
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10.  
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