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Abstract

This thesis explores the use of different agro-hydrological modelling methodologies to
understand and predict various types of droughts, as well as river discharge and crop yields.
The research hypothesis states that the accuracy of agro-hydrological modelling can be
enhanced by utilizing multi-objective calibration approaches and input data from satellite-based
datasets. The research underscores the complexity of hydrological phenomena and the need for
comprehensive modelling techniques to capture this complexity accurately. The findings
suggest that incorporating satellite-based soil moisture data can significantly enhance the
accuracy of models such as the Soil and Water Assessment Tool+ (SWAT+). This is particularly
evident in the transition from single-objective to multi-objective calibration approach, which
not only improved the precision of river discharge simulations but also provided more reliable
crop yield estimates. Additionally, this thesis uses a data-driven model (Artificial Neural
Networks -ANN) to simulate river discharge, hydrological drought, and crop yields. We found
that using drought indicators, such as the Standardized Precipitation Index, as the ANN inputs
significantly improved its performance. These advancements in modelling techniques are
crucial for regions with limited observed data and are essential for conducting studies on the
impacts of climate change and model-based water accounting. The research highlights the
challenges associated with satellite-based datasets, such as the PERSIANN products, which
have limitations in runoff simulations. Careful dataset selection and calibration are necessary
to ensure the reliability of hydrological models. The research also revealed the non-linear
relationship between projected changes in climate variables and ANN outputs, which contrasts
with process-based model, which suggests that ANNs may respond differently to environmental
factors. Overall, the research provides valuable insights into the field of hydrology, and offers
innovative methods to improve the accuracy of hydrological models. These methods can help
manage water resources, inform agricultural practices, and improve our understanding of
hydrological responses to climate variability and change. The findings emphasize the
importance of using multiple indices and datasets to capture the complex nature of droughts

and their diverse impacts on ecosystems and human societies.



Streszczenie

Celem niniejszej rozprawy jest badanie mozliwosci wykorzystania réznych technik
modelowania agro-hydrologicznego w celu lepszego zrozumienia i prognozowania réznych
typow susz, a takze przeptywoéw rzecznych i plonéw roslin uprawnych. Hipoteza badawcza
glosi, ze dokladno$¢ modelowania agro-hydrologicznego mozna zwigkszy¢ poprzez
wykorzystanie wielokryterialnych podej$¢ kalibracyjnych oraz danych wejéciowych
pochodzacych ze zbioré6w danych satelitarnych. Badania podkreslaja ztozonos¢ zjawisk
hydrologicznych i potrzeb¢ kompleksowych technik modelowania w celu dokladnego
uchwycenia tej ztozonoséci. Wyniki sugeruja, ze uwzglednienie danych o wilgotnoscei gleby
pochodzacych ze zdje¢ satelitarnych moze znacznie zwigkszy¢ doktadnos¢é modeli takich jak
Soil and Water Assessment Tool+ (SWAT+). Jest to szczegdlnie widoczne przy przejsciu z
jednokryterialnego do wielokryterialnego podejscia kalibracyjnego, ktore nie tylko poprawilo
doktadnos¢ symulacji przeptywow, ale takze zapewnilo bardziej wiarygodne szacunki plonéw.
Ponadto w niniejszej pracy wykorzystano model oparty na danych (sztuczne sieci neuronowe -
ANN) do symulacji przeptywdéw, suszy hydrologicznej i plonéw. Stwierdzono, ze
wykorzystanie wskaznikow suszy, takich jak znormalizowany wskaznik opadéw (SPI) jako
danych wejsciowych do modelu ANN w sposdb istotny poprawito dokladnos¢ tego modelu. Te
postepy w technikach modelowania majg kluczowe znaczenie dla regionéw o ograniczonych
danych obserwacyjnych i sa niezbedne do prowadzenia badan nad wptywem zmiany klimatu.
Badania podkreslaja wyzwania zwigzane ze zbiorami danych satelitarnych, takimi jak produkty
PERSIANN, ktére majg ograniczenia w symulacjach przeptywu. Staranny dobor i kalibracja
zbiorow danych sg niezbedne do zapewnienia wiarygodno$ci modeli hydrologicznych. Badania
ujawnily réwniez istnienie nieliniowego zwigzku miedzy projekcjami zmiennych
klimatycznych a wynikami modelu ANN, co sugeruje, ze odpowiedZ modeli ANN na podobny
sygnal zmian $rodowiskowych moze by¢ istotnie rézna niz odpowiedZ modeli opartych na
procesach takich jak SWAT+. Przeprowadzone badania zapewniaja cenny wglad w dziedzine
hydrologii i oferujg innowacyjne metody poprawy dokladnosci modeli hydrologicznych.
Metody te mogg pomdc w zarzadzaniu zasobami wodnymi, informowaniu o praktykach
rolniczych i poprawie zrozumienia odpowiedzi hydrologicznej na zmienno$¢ i zmiany klimatu.
Wyniki badan podkreslajg znaczenie stosowania wielu wskaznikéw i zbioréw danych w celu
uchwycenia zlozonego charakteru susz i ich réznorodnego wplywu na ekosystemy i dziatalnosé

czlowieka.



1. Introduction

1.1 Drought

Drought, when intertwined with the effects of climate change, poses a multifaceted
environmental challenge that extends its influence to various aspects of global security, food
production, inland water bodies, ecosystems, societies, and economies. The interpretation of
what constitutes a drought varies across the globe, reflecting the diverse values and significance
different societies and regions place on water. In its most severe form, drought has the potential
to disrupt daily life; in less extreme cases, it may restrict recreational activities or impede

maritime transportation (Hellwig et al., 2017; Langhammer and Bernsteinova, 2020).

In recent years, Central Europe has been subjected to a series of intense and prolonged
droughts, which have had far-reaching impacts on sectors such as agriculture, energy
production, and water management. Notably, during years like 2015, 2018, and 2019, the region
grappled with unusually low water levels and river flows, often in conjunction with
exceptionally high water temperatures (Bormann and Pinter, 2017; Ionita et al., 2017; Kubiak-

Wojcicka and Machula, 2020; Laaha et al., 2017; Meresa et al., 2016).

The 2018 drought had a more significant impact on land ecosystems than the previously
most severe event in 2003, which was considered the most extreme compound heat and drought
event in Europe for the past century. In June 2019, over 350 municipalities in Poland were
compelled to introduce drinking water usage restrictions. Skierniewice, a town near Warsaw
with nearly 50,000 residents, was forced to reduce its municipal water supply in certain districts.
An atypical drought in early spring 2020 in Poland led to a wildfire that devastated over 5,000
hectares of Biebrza National Park, a sanctuary for untouched wetlands. This series of events
underscores the profound and far-reaching impacts of drought on both natural ecosystems and
human societies. Increasing agricultural losses due to extreme weather events, particularly
droughts, have been well documented in Poland in recent decades (Bachmair et al., 2015;

Piniewski et al., 2022; Piniewski et al., 2018).

Drought is a multifaceted phenomenon that can be classified into various types based on
its impacts, such as meteorological, hydrological, agricultural, and socioeconomic droughts
(Van Loon, 2015). Each type of drought is characterized by specific indicators and triggers:
Meteorological drought is primarily due to a lack of rainfall, which can be immediately
noticeable (Prodhan et al., 2022; Wang et al., 2022). It can spread rapidly and end just as quickly.

Hydrological drought occurs after extended periods of insufficient rainfall, leading to reduced
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runoff, aquifer storage, and lower levels in dams and lakes. Agricultural drought happens when
there is a reduction in soil water availability, particularly during the crop farming season,
impacting food production and security. Socioeconomic drought arises when the effects of the
other drought types influence social and economic activities. While these classifications focus
on the human-centric impacts of drought, they may not fully address the environmental aspects

(Koohi et al., 2021; Vicente-Serrano et al., 2020).

Drought also serves as an indicator of below-average water availability. The frequency
and severity of drought events have increased in many parts of the world due to heightened
water demands and climate change. This has made drought a high-priority research topic. The
progression of drought typically begins with a significant lack of precipitation, leading to
agricultural drought (lack of soil water), and eventually to hydrological drought (decline in river
discharges). These droughts threaten food security, farmers’ livelihoods, and water availability
for both humans and ecosystems. Additionally, drought events have been linked to domestic
and international conflicts in some regions, making the projection of drought events crucial,
particularly in transboundary river basins (Boxell, 2019; Van Huynh et al., 2019; Van Loon,
2015; von Uexkull, 2014).

To assess drought conditions, several indicators have been developed, including,
Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index
(SPI), Agricultural Reference Index for Drought (ARID), NOAA Drought Index (NDI),
Aggregate Dryness Index (ADI), Standardized Runoff Index (SRI), Combined Drought
Indicator (CDI), and Soil Moisture Deficit Index (SMDI) (Prodhan et al., 2022; Raposo et al.,
2023; Svoboda and Fuchs, 2016). These indicators employ statistical methods to transform
physical variables such as precipitation, runoff, soil moisture, and evaporation into categorized
values, facilitating the analysis of water scarcity over time. Drought assessments are usually

done in various scales, such as river basins, countries, or even a single observational gauge.

1.2 Modeling approaches in drought assessments

To evaluate the historical patterns and project future occurrences of hydrological and
agricultural droughts, it is customary to utilize modeling techniques (Prodhan et al., 2022).
These models can be applied across various scales, from national to river basin levels, and can
incorporate diverse methodologies to address the multifaceted nature of drought phenomena

(Hao and Singh, 2015). Effective modeling requires a comprehensive suite of tools capable of

10



capturing the intricate interactions within the hydrological cycle and the subsequent impacts on

agriculture (Rashid et al., 2020).

River basins are sophisticated networks where a multitude of processes happen
continuously. These processes encompass the interplay between groundwater and surface water,
fluvial dynamics, agricultural cycles, nutrient cycling, and human influences. Grasping these
dynamics at a microscale, such as within a controlled experimental setup or an agricultural plot,
might appear manageable. However, the complexity escalates significantly when scaled to real-
world conditions. This complexity is due to the high degree of variability encountered in natural
settings, which can result in disparate agricultural yields even among farms with similar
practices within the same region. Likewise, water conservation strategies may yield divergent

results contingent upon regional implementation (Brookfield et al., 2023; Keller et al., 2023).

In response to these complexities, the hydrological community has developed an array
of models to serve as decision-support tools. These models are designed to emulate and forecast
the outcomes of various hydrological scenarios. Process-based distributed agro-hydrological
models such as the Soil and Water Assessment Tool+ (SWAT+) (Bieger et al., 2017) or the
Variable Infiltration Capacity model (VIC) (Hamman et al., 2018) in particular, are extensively
employed to model the repercussions of anthropogenic actions, such as alterations in land use,
as well as natural phenomena, including heatwaves and extreme precipitation events, on the
hydrological cycle and agricultural productivity. Nonetheless, a common limitation of these
models is their tendency to prioritize runoff during calibration, which can lead to an
underrepresentation of other hydrological components, such as the proportion of
evapotranspiration within the water balance or the infiltration rates (Delavar et al., 2022). For
example, the evaluation of climate change impacts on the water balance or soil moisture within
heavily irrigated zones may be skewed if the hydrological model is calibrated predominantly
with runoff data. Accurate calibration necessitates a holistic approach that considers all facets
of the hydrological cycle to ensure reliable predictions and effective water resource

management (Delavar et al., 2022).

In the realm of hydrological modeling, the phenomenon of equifinality — where
multiple parameter sets yield comparably satisfactory outcomes for simulated discharge — is a
recognized challenge (Beven, 2006). To mitigate this issue, the implementation of multi-
objective calibration is advisable. This approach enhances the calibration process by integrating

a broader array of temporal and spatial variables, such as crop yields, soil moisture, base flow,
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potential and actual evapotranspiration, leaf area index (LAI), infiltration rates, biomass

indices, and tile drainage flows (Delavar et al., 2022; Eini et al., 2020).

The quest for precision in hydrological modeling becomes particularly arduous within
transboundary basins, where access to comprehensive and reliable measured data may be
constrained or non-existent, and where existing datasets may suffer from disparities in precision
or granularity. Hydrological evaluations in such basins are imperative not only for an exhaustive
analysis of the water balance but also for formulating strategies to manage international
conflicts and to promote sustainable management practices across the basin, a necessity that is

increasingly pressing in the context of global climate change.

Data-driven approaches like Artificial Intelligence (Al) are beneficial in the field of
agro-hydrology, alongside process-based models. Hydrologists have lately shown interest in
using artificial intelligence (AI) to model and predict different phenomena (Moghadam et al.,
2022; Prodhan et al., 2022). Al-based methodologies rely on statistical and/or mathematical
techniques to identify correlations between input data and outcomes. These methods have
demonstrated high precision in replicating various processes in hydrology, agriculture, and
meteorology, including modeling and forecasts of soil moisture, crop production, wind speed,
solar radiation, river flow, drought, and sedimentation (Pektas and Kerem Cigizoglu, 2013; Piri

et al., 2022; Prodhan et al., 2022; Yang et al., 2015).

Al-based models like machine learning and deep learning have significantly influenced
drought management and have been utilized as substitutes for process-based hydrological
models, as stated by Moghadam et al. (2022). Al-based models can effectively simulate and
predict hydrological and meteorological data for detecting droughts due to their ability to self-
organize and adapt to non-linear and unstable conditions. Various Al-based models, categorized
into unsupervised and supervised learning approaches, have been evaluated in drought
simulations. Supervised learning necessitates labeled data during training to allow the model to
generate predictions based on known outputs. The model establishes the connection between
input and output variables by refining its parameters through the labeled instances.
Unsupervised learning involves analyzing unlabeled data to identify patterns and structures
without predetermined outputs. The model analyzes the data to detect parallels, differences, or
clusters, unveiling hidden linkages. Unsupervised learning is commonly applied in problems

such as clustering, anomaly detection, and dimensionality reduction (Alloghani et al., 2020).
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1.3 Satellite-based datasets

Global gridded datasets address the shortcomings of incomplete, poorly measured, or
unavailable data (Eini et al., 2019). These datasets fall into three categories: ground-based,
satellite-based, and a combination of both (Darand and Khandu, 2020; Eini et al., 2021).
Remotely sensed datasets have gained traction in hydrology for model calibration and
validation, as well as for providing supplementary meteorological data during model setup.
Satellite products enhance the consistency of distributed hydrological models by offering
spatially comprehensive data. Moreover, the accuracy of hydrological models is often improved
by incorporating new processes or refining existing empirical equations, ultimately enhancing

water balance simulations at the basin scale.

For hydrological and environmental assessments, including drought monitoring,
precipitation data is crucial. Traditional in situ measurements, while highly accurate, suffer
from limitations such as sparse spatial distribution, expensive maintenance, delays in data
dissemination by regional authorities, and lack of global reach. These shortcomings can
compromise the effectiveness of drought monitoring, especially in large transboundary river

basins or in developing countries.

Current methods provide a uniform network for precipitation time series, encompassing
reanalysis, gauge-interpolated, non-gauge-corrected satellite-based, and gauge-corrected
satellite-based precipitation estimates. Satellite-based precipitation estimates, in particular,
offer high-resolution, near real-time, and sub-daily data on a global scale, making them
invaluable for drought monitoring, hydrological modeling, water resource analysis, and climate
studies. Despite their widespread use as a substitute for ground-based data, the reliability of
these satellite-derived products varies regionally, and their precision in some areas is yet to be

determined (Brocca et al., 2014; Darand and Khandu, 2020).

Soil moisture (SM) is a key variable that bridges the energy and water cycles, playing a strategic
role in runoff generation and crop development. It affects runoff, land-atmosphere carbon
fluxes, vegetation, and evapotranspiration processes across the basin. Soil moisture exhibits
temporal, spatial, and vertical variability, influenced by meteorological parameters, soil texture,
land cover and use, groundwater levels, and topography. Consequently, ground-based
measurement of soil moisture necessitates an extensive network. Additionally, models often
rely on parameterizations of soil, land cover, and climate forcing, which may not always be

precise. Therefore, access to spatially distributed soil moisture data is essential for enhancing
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model accuracy and developing robust hydrological systems (Azimi et al., 2020; Brocca et al.,

2011; Brocca et al., 2020; Brocca et al., 2010).

2.

Research objectives and hypotheses

The following three objectives have been formulated in this thesis:

a) Improving the accuracy of agro-hydrological process-based and data-driven models

for predicting drought

b) Assessing the changes in different types of drought in Poland

¢) Evaluating satellite-based datasets in agro-hydrological applications

The hypothesis of this thesis states that the accuracy of agro-hydrological modeling can

be enhanced by utilizing multi-objective calibration approaches and input data from satellite-

based datasets. It suggests that by integrating different modeling techniques and homogeneous

datasets, one can potentially improve the precision of models that predict agricultural and

hydrological processes. This approach acknowledges the complexity of environmental systems

and the value of multi-source data integration in capturing this complexity more effectively.

The outputs of this study were published in five publications, which can be found as

attachment of the thesis. The links between objectives and outputs are shown in Figure 1.

1-

Eini. M. R., Ziveh, A. R., Salmani, H., Mujahid, S., Ghezelayagh, P., & Piniewski,
M. (2023). Detecting drought events over a region in Central Europe using a regional
and two satellite-based precipitation datasets. Agricultural and Forest Meteorology,
342, 109733. https://doi.org/10.1016/j.agrformet.2023.109733

Impact factor: 6.2 — MeiN: 200

Eini, M. R.. Rahmati, A., & Piniewski, M. (2022). Hydrological application and

accuracy evaluation of PERSIANN satellite-based precipitation estimates over a
humid continental climate catchment. Journal of Hydrology: Regional Studies, 41,
101109. https://doi.org/10.1016/j.ejrh.2022.101109

Impact factor: 4.7 — MeiN: 100

Eini, M. R.. Salmani, H., & Piniewski, M. (2023). Comparison of process-based and

statistical approaches for simulation and projections of rainfed crop yields.
Agricultural Water Management, 277, 108107.
https://doi.ore/10.1016/j.agwat.2022. 108107

Impact factor: 6.7 —MeiN: 140
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4-

Eini, M. R.. Massari, C., & Piniewski, M. (2023). Satellite-based soil moisture

enhances the reliability of agro-hydrological modeling in large transboundary river
basins. Science of the Total Environment, 873, 162396.
https://doi.org/10.1016/].scitotenv.2023.162396

Impact factor: 9.8 — MeiN: 200

Eini, M. R.. Najminejad, F., & Piniewski, M. (2023). Direct and indirect simulating

and projecting hydrological drought using a supervised machine learning method.
Science of The Total Environment, 898, 165523.
https://doi.org/10.1016/].scitotenv.2023.165523

Impact factor: 9.8 —MeiN: 200

Research objectives > Outputs

Improving the accuracy of agro-

hydrological process-based and data- - - - -

driven models

G e [P e
ro-hvdrologicat applications of satellite- _- -

biasced datasets

3.

Figure 1- Relationships between research objectives and outputs.

Materials and methods

In this research, various types of datasets and models were utilized. Figure 2 shows the

connections between data, models and outputs. The models used in this study are SWAT+ and

a data-driven method (ANNs), which represent two distinct types of models. The former is an

agro-hydrological process-based model, while the latter is a data-driven model. Additionally,

satellite-based datasets were selected as inputs for this study and were employed for different

purposes. A brief explanation of their applications is described below:

a) The satellite-based soil moisture dataset was utilized in hydrological modeling to

enhance the accuracy of streamflow and crop yield simulations.

b) Precipitation datasets from various sources were employed to detect droughts and for

integration into hydrological modeling.
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Satellite-based data
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Figure 2- The connections between data, models, and outputs.

3.1 Study areas

In this thesis, the focus was on two different scales and three different study areas, a
meso-scale watershed (Welna catchment), and two macro-scale areas: a large-transboundary
river basin (Odra River Basin - ORB), and the union of Odra and Vistula river basins and Poland
territory (hereafter denoted as ‘Poland+’). Figure 3 illustrates the study areas. Complete

descriptions of the selected study areas are included in attached publications.
These study areas were selected due to the below reasons:

a) An assessment of drought conditions and using global datasets over a large region in
Central Europe (Poland+)
b) Assessing climate change effects on meso-scale and large scale transboundary basin

15'(:‘0"E 20 '(l‘O"E 25’(}' 0E

Lithuania

z z
s 8 g
Legend 3 3
- Welna Catchment Mo Ukraine
:] Poland+ Slovakia
[ Jors 0 60 120 240 Kilometers
[ country borders o s |

Figure 3- Study areas: Welna River catchment, Odra River Basin (ORB), and Poland+.
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3.2 Data

In this study different types of datasets were used. For precipitation, as a reference
dataset, we employed a gridded daily climate dataset (G2DC-PL+) (Piniewski et al., 2021). As
satellite-based precipitation datasets, PERSIANN family products and SM2RAIN-ASCAT
were used in the hydrological modeling (Brocca et al., 2019; Nguyen et al., 2019). In addition,
we employed ESA (European Space Agency) CCI (Climate Change Initiative) Soil Moisture
(SM) dataset (version 07.1) to calibrate SWAT+ model (Gruber et al., 2019). River discharge
were provided by the Institute of Meteorology and Water Management - National Research
Institute (IMGW-PIB) of Poland. The details of the datasets are mentioned in attached

publications extensively.

3.3 Drought indicators

In the first step of this research (Publication 1), understanding the spatio-temporal
variability of droughts in Poland was crucial. In this regard, different types of precipitation
datasets were employed as inputs for calculating SPI drought indicator for the Poland+ area.
SPI is a widely used metric for quantifying drought severity and evaluating environmental
variations based on precipitation, as introduced by McKee et al. (1993). Its value lies in its
straightforward calculation and temporal flexibility, allowing for the identification of different
drought types, including meteorological, agricultural, and hydrological. For instance, Xu et al.
(2015) employed SPI-3 to represent meteorological drought, while Koohi et al. (2021) utilized
SPI-6 and SPI-12 as proxies for agricultural and hydrological droughts, respectively. In this
thesis, SPI was employed as input of the ANN model developed for simulations and projections

of crop yields, river discharges, and hydrological droughts.

In publication 5, the Standardized Runoff Index (SRI), similar to SPI in its
computational approach, serves as a metric for hydrological drought. It leverages river
discharge data to evaluate drought severity. The SRI is computed over different time spans to
represent the varying durations of droughts: SRI-3 for short-term droughts, SRI-6 and SRI-9
for mid-term droughts, and SRI-12 for long-term drought conditions. This allows for an

accurate understanding of drought impacts over time.

3.4 Modeling tools and approaches

The second step of research conducted within this thesis involved modeling agro-
hydrological processes using two distinct modeling approaches (publication 2, 3, and 4). The

first is the SWAT+ model, an advanced iteration of the SWAT model that is currently in
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development (Bieger et al., 2017). The second approach employs a data-driven method (ANNSs),
which is increasingly popular in Earth sciences (publication 3 and 5). Figure 4 displays the

connections between topics and outputs.

The initial application of the SWAT+ model was conducted on the Welna watershed, a
meso-scale catchment area (publication 2 and 3). This preliminary phase aimed to evaluate the
available data and the feasibility of implementing SWAT+. At the study’s inception in 2020,
SWAT+ was a novel and somewhat unstable model, necessitating a trial run on a smaller scale
to ascertain its strengths and weaknesses. Additionally, the SWAT+ model was utilized to

simulate and project crop yields within the Wetna watershed.

Subsequently, a second SWAT+ configuration was developed for the Odra River Basin
(publication 4). This model underwent calibration and validation processes using river
discharge data, soil moisture, and crop yield figures. For these procedures, both multi-objective

and single-objective methods were employed to ensure the model’s accuracy and reliability.

In this thesis, Artificial Neural Networks (ANNs) were employed to simulate crop
yields, river discharges, and hydrological droughts. A variety of input data was incorporated
into the ANN to enhance the model’s precision. This data-driven approach allows for the
refinement of simulations, making them more representative of the complex interactions in

agro-hydrological systems.

In the Welna watershed, crop yield simulations using ANN were conducted by
incorporating SPI-1 to SPI-12 as input data beside the other meteorological datasets. SPI also
were used for simulating and projecting river discharges and hydrological drought over Odra
River Basin, via direct and indirect methods. The direct method involves simulating and
projecting the SRI from the specified predictors. Conversely, the indirect method produces river
discharge outputs via an ANN, which are then used to calculate the SRI. Following the
completion of training, validation, and testing phases, two ANN models are prepared to estimate
river discharge projections using the indirect method and SRI projections using the direct

method.
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Figure 4- Connections between main topics and outputs.

4. Results

In this section, we briefly summarize the key findings pertinent to the current study, as derived
from the published publications. While some publications, notably publication 3, delve into a
broader range of sub-topics and introduce multiple novel concepts, we have chosen to
streamline the content presented in this thesis. This ensures a focused and cohesive narrative
that aligns closely with the core research objectives, facilitating a clear and comprehensive

understanding for the reader.

4.1 Improvements in agricultural and hydrological drought predictions

The main objective of this thesis was to improve the accuracy of agro-hydrological
models for predicting drought using different techniques. We used drought indicators ranging
from SPI-1 to SPI-12 as inputs for Artificial Neural Network (ANN) models to simulate and
predict river discharge, hydrological drought indicator (SRI), and crop yields. The accuracy of
the ANN model can be greatly enhanced by incorporating drought indicators as inputs, as
suggested by our research. For instance, incorporating drought variables into crop yield
simulations substantially improved the model's precision (see Table 7 in publication 3). The
variables include SPI (1 to 12 scales), precipitation, maximum and minimum temperatures, and
solar radiation. The Root Mean Square Error (RMSE) was significantly decreased from
approximately 0.49 to 0.07 in the test phase by including these components. The coefficient of
determination (R-square) increased from 0.34 to 0.98, suggesting a strong correlation between
the observed and estimated values. Each SPI (1 to 12) retains important data for crop yield

modeling.
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In the next assessment, we used SPI as input for hydrological drought simulations and
projections (SRI indicator) using direct and indirect approaches. Direct method involves
simulating and projecting SRI directly from inputs, while indirect method bases SRI
calculations on simulated river discharge. Our findings indicate that indirect simulations of
hydrological drought are more accurate than the direct approach for all accumulation periods
of the SRI (Figure 5). Higher precision in runoff simulations results in higher accuracy in
hydrological drought simulations. Employing same predictors (precipitation, temperature, and
SPI) in both methods did not result in similar accuracy in hydrological drought simulations,
with the indirect method demonstrating superior performance. Figure 5 shows results for the
last gauging station on the Odra river (Gozdowice), but the same conclusions can be drawn for

three other gauges used in the analysis (see Fig. 5 of publication 3).
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Figure 5- SRI time series estimation based on observed data, direct, and indirect
approaches for the Odra river at Gozdowice gauging station. Different panels present different
SRI accumulation periods (A — SRI-3, B- SRI-6, C- SRI-9, D - SRI-12).

For future projections, four CMIP5-based General Circulation Models (GCMs) were
downscaled using the LARS-WG downscaling tool to estimate precipitation and temperature
for two future timeframes: the near future (2021-2040) and the far future (2041-2060), under
the most severe CO2 concentration scenario (RCP8.5). The corresponding climate scenarios
were labelled: "moderate”, “warm and dry”, and “warm and wet” in the analyses.

The research results suggest that estimates derived from indirect simulations are more
reliable and also indicate differences in projections between the two methodologies. On the

other hand, the direct method indicates substantial alterations in hydrological drought

projections when compared to the historical period. A subset of results for the Odra river main
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outlet and two accumulation periods (SRI-3 and SRI-6) is presented in Table 1, while a more
comprehensive analysis involving other gauges and accumulation periods can be found in

Figures 8 and 9 of the publication 5.

Another example of enhancing agro-hydrological modelling is included in publication 4, in
which we used a soil moisture satellite-based dataset, in addition to discharge, for a multi-

objective SWAT+ model calibration.

Table 1- Projected SRI-3 and SRI-6 against historical SRIs for the outlet of ORB using

the direct and indirect approaches- according to run theory with threshold level -1.

SRI-3 SRI-6
Scenario Minimum N:::/b:l; of Severi.ty Intensi'ty Minimum Nl:env‘:z . Severity Intensity
(most severe droughts (sum if (Sevepty (most severe droughts (sum if (Severity
drought) (months) SRI<1) /Duration) drought) (months) SRI<1) /Duration)
Indirect approach - Discharge station A
Historical -1.56 34 -42.32 -1.24 -1.64 34 -44.12 -1.3
Moderate (NF) -2.99 36 6133 A7 -2.94 26 462 172
Warm and dry (NF) -3.03 32 -56.94 -1.78 29 27 4587 -1.7
‘Warm and wet (NF) -2.97 32 -56.52 -1.77 -2.98 31 -50.33 -1.62
Moderate (FF) | 284 36 5935 | -los -2.98 31 -50.34 -1.62
Warm and dry (FF) -2.98 32 -56.92 -1.78 =31 R -51.56 -1.61
Warm and wet (FF) 328 31 SN -1.77 -3.07 32 -50.2 157
Direct approach - Discharge station A
Historical -1.56 34 -42.32 -1.24 -1.64 34 -44.12 -1.3
Moderate (NF) 23 3 9332 -1.26 -1.81 45 5726 -1.27
Warm and dry (NF) 2 61 -77.23 -1.27 -1.81 43 -54.22 -1.26
Warm and wet (NF) -1.93 63 -719.77 -1.27 =186 43 -54.74 -1.27
Moderate (FF) | 134 4 6038 133 m 3 4580 e
Warm and dry (FF) -1.92 54 -68.21 -1.26 -1.8 42 -53.07 -1.26
Warm and wet (FF) -1.89 44 -62.52 -1.28 -1.82 41 -52.61 -1.28

In the single-objective calibration approach, which focused solely on discharge, the
SWAT+ model demonstrated commendable accuracy in runoff simulations. The average Kling-
Gupta Efficiency (KGE) was above 0.60 and 0.63 in the calibration and validation periods,
respectively. In this approach, we adjusted the satellite-based soil moisture with the SWI index
and incorporated it as the second variable in the calibration step, thus transitioning to a multi-

objective approach.
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In the multi-objective approach, which considered both discharge and soil moisture, the
accuracy of simulations at river discharge stations saw a substantial increase (KGE = 0.67 in

the calibration and 0.69 in the validation periods) compared to the single-objective approach.

In the simulations of daily discharge, soil moisture emerged as a crucial factor that
substantially improved the results (Figure 6). This underscores the importance of incorporating
relevant environmental factors into modeling efforts to ensure more accurate and reliable
outcomes. Indeed, the calibration of soil moisture proved to be a pivotal factor in enhancing the
accuracy of our model. Not only did it lead to an improvement in the simulations of discharge,
but it also enhanced the results of crop yield simulations. This dual improvement underscores

the interconnected nature of these agro-hydrological variables.
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Figure 6- Comparison of the SWAT+ model performance in river discharge simulations

in the ORB using KGE metrics between single- and multi- objective calibration approaches.

Furthermore, multi-objective method offered useful information about the distribution
of soil moisture within the basin as seen in Figure 7. By matching our model's results with
satellite-based SM data, we could validate and gain a deeper insight into the spatial and
temporal patterns of soil moisture in the basin. This enhances the understanding of the basin's
hydrological dynamics and specifically drought conditions. The results emphasize the
significance of calibrating soil moisture in hydrological modeling to enhance the precision of

agricultural and hydrological predictions.
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Figure 7- Distribution of the SWAT+ model accuracy in soil moisture (top soil)

simulations according to SPAEF metrics in the ORB against satellite-based SM dataset.

Finally, the multi-objective approach also improved process-based crop yield
simulations for two most important grain crops: winter wheat and spring barley (Fig. 8). The
multi-objective approach led to more variation in simulated yield, which is closer to observed
records. The model performance in corn and rapeseed yield simulation was poorer and less

dependent on the calibration approach than for grain crops.
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Figure 8- Comparison of multi-annual distribution of simulated crop yields using single-

and multi-objective approaches (SO and MO) with the observed data.
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4.2 Drought detection

According to the selected methodology in publication 1, our results show that, based on
reference dataset, over a period of 154 months, the study area (Poland+) experienced 15 severe
meteorological droughts (SPI-3 <-1) and was in a state of meteorological drought for over 80
months (SPI-3 < 0), affecting more than half of the observed months. Agricultural droughts
were also prevalent, with the reference dataset identifying 12 severe instances using SPI-6 and
16 with SPI-9. In comparison, our analysis, based on the PERSIANN-CDR dataset, shows 24
severe agricultural droughts using SPI-6 and 20 using SPI-9. Also, 11 severe agricultural
droughts were found across both SPI-6 and SPI-9, based on SM2RAIN-ASCAT dataset. For
hydrological droughts, the reference dataset recorded 15 severe events (SPI-12 < -1) and 75
occurrences of hydrological drought (SPI-12 < 0). The PERSIANN-CDR dataset detected
fewer overall hydrological droughts (67 events) but identified 20 severe ones. Meanwhile, the
SM2RAIN-ASCAT dataset noted 84 hydrological droughts between 2007 and 2019, with 11
classified as severe. Figure 9 shows different types of drought for the reference and
PERSIANN-CDR datasets, in general it can be seen that PERSIANN-CDR match well in
estimating SPIs.
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Figure 9- Different types of drought based on SPI, reference dataset against PERSIANN-CDR
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Our research indicates that meteorological droughts (SPI-3) have distinct geographical
distributions compared to agricultural (SPI-6 and SPI-9) and hydrological droughts (SPI-12),
suggesting that each form of drought displays distinctive spatial features and patterns in the
study region (Figure 10). This emphasizes the need of utilizing several indicators and datasets

to precisely depict the intricate characteristics of droughts.

Enlarging the SPI window shows that the western part of the research area has faced
more intense droughts according to the reference dataset. PERSIANN-CDR shows a pattern
like the reference dataset, especially when using SPI-6 (see Figure 7 in publication 1). Severe
meteorological droughts were detected mostly in the eastern region, whereas agricultural and
hydrological droughts were more common in the western region. The satellite datasets were

unable to detect the regional variations among the different types of droughts.
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Figure 10- Spatial distribution of drought severity (SPI < -1) based on reference dataset
over the study region (2007-2019) for different SPI accumulation periods (A — SPI-3; B — SPI-
6; C — SPI-9; D- SPI-12).
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4.3 Application of satellite-based datasets in hydrological modeling

While the usefulness of the satellite-based soil moisture dataset was already discussed
in section 4.1, here we focus on our experience with using precipitation datasets for agro-
hydrological modelling. An additional aim of this research was to delve into the utilization of
satellite-based datasets in the realm of hydrological modeling (Figure 2). This was specifically
addressed in the second and fourth publications, where satellite-based datasets were employed

for hydrological modeling purposes.

The second publication undertook a comprehensive evaluation of the PERSIANN
family products, applying them to a meso-scale catchment and comparing the results against a
reference dataset. Following the calibration of each dataset, it was found that the PERSIANN
products did not produce satisfactory results for runoff simulations in our analysis. The Kling-
Gupta Efficiency (KGE) values for these datasets, which ranged from -11 to 0.34, indicated
subpar model performance. Furthermore, the Percent Bias (PBIAS) values were significantly
higher, suggesting the presence of substantial errors in the runoff simulations. This underscores
the challenges and limitations associated with the use of these products in hydrological

modeling.

In hydrological modeling, the configuration of the model, the calibration of its
parameters, and the quality of the input data are critical factors that introduce uncertainty into
the simulation results. Specifically, inaccuracies in the rainfall data used as input can lead to
significant errors in the modeled runoff, affecting the reliability of the simulations. It’s essential

to address these sources of uncertainty to improve the model’s predictive capability.

5. Discussion

Discussion of results achieved in this thesis can be categorized into three sections based
on the objectives. The main objective was to improve the precision of drought simulations and
predictions through the utilization of process-based and data-driven techniques. The second
objective was to comprehend the variability of droughts in Poland. The last objective was to
evaluate the hydrological use of satellite-based information in hydrological models. Various
techniques can help achieve these aims and may provide varied outcomes, as indicated in the

literature.
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5.1 Improving data-driven simulations via drought indicators

We used drought indicators (SPI-1 to SPI-12) and meteorological datasets in a data-
driven method (ANN) to investigate the effectiveness of drought indicators in simulating crop
yield, hydrological drought, and river discharge. Similar to our approach, other research has
demonstrated great accuracy in river discharge models using data-driven approaches. Ikram et
al. (2022) utilized five various data-driven techniques to model monthly river discharge in
mountainous regions of Pakistan, finding that these methods exhibit great precision in
predicting discharge. In a research conducted in Iran, ANN was shown to be less effective in
runoff simulations compared to SWAT and IHACRES (Moghadam et al., 2022). Kisi et al.
(2013) conducted a study in Turkey and found that data-driven approaches such as ANN,
ANFIS, and GEP are effective and precise tools for runoff simulations, which aligns with our
findings. These approaches may not effectively detect human-induced changes in a basin and
are more likely to work well in natural basins without agricultural activity or man-made
buildings. These strategies are not dependable in complex and controlled basins. The study
demonstrated that ANN outperformed in simulating discharge in a lowland catchment when
compared to a mountainous catchment. This discovery contributes a novel perspective to the
current understanding of the efficacy of ANN in hydrological modeling and emphasizes the

impact of catchment features on model accuracy.

Like our study, data-driven approaches used in hydrological drought simulations have
shown good accuracy levels. Shamshirband et al. (2020) utilized three data-driven approaches
(SVR, GEP, and MT) to simulate several drought indicators directly in an Iranian basin. The
present study shows results that align with their previous research in terms of correlation and
RMSE performance metrics. Nabipour et al. (2020) used ANN to directly predict hydrological
drought in an Iranian basin. Their study, like ours, utilized the SPI as a predictor of the
Standardized Hydrological Drought Index (SHDI) over several time scales, and ANN yielded
comparable outcomes to our study. Other investigations, as detailed in Prodhan et al. (2022),
show that data-driven strategies yield similar performance indicators to those of the current

research. The direct technique has been utilized in all the investigations listed.

Our research suggests that using indirect methods for simulating hydrological droughts
is more precise than using direct methods. The accuracy of hydrological drought models using
the indirect approach relies on the precision of river discharge simulations. Improved precision
in river discharge simulations leads to enhanced precision in hydrological drought simulations.

Utilizing the same variables (precipitation, temperature, and SPI) in both approaches did not
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yield comparable accuracy in hydrological drought simulations, with the indirect strategy

demonstrating higher performance.

Utilizing climatic data like precipitation, maximum and minimum temperature, and
solar radiation directly in statistical models is a prevalent method for simulating crop yields.
Our findings indicate that using a metrological drought index as an input enhances the
dependability of the statistical method in crop yield modeling. Research conducted in Germany
and India found that deviations in soil moisture levels may accurately forecast silage maize

yield, aligning with our findings (Modanesi et al., 2020; Peichl et al., 2018).

Various studies have demonstrated that utilizing different models and climatic scenarios
can result in varied crop yield projections when employing machine learning methods. These
projections may indicate both increases and decreases under similar conditions (Johnson, 2013;

Knox et al., 2016; Kolberg et al., 2019).

5.2 Improving process-based models via satellite-based datasets

The multi-objective calibration improved the accuracy of the SWAT+ model (an
process-based agro-hydrological model) in simulating river flow and crop yields in our study
over the Odra River Basin. Previous research have found enhancements in river discharge
simulations and water balance components through multi-objective calibration in the SWAT
model. Delavar et al. (2022) used runoff, aquifer water table, infiltration rate, crop yields, and
ET to enhance the model's consistency. Furthermore, Ma et al. (2019) demonstrated that
utilizing MODIS-based Leaf Area Index (LAI) greatly improved the model's adaptability and

the geographical spread of plant cover in subtropical areas.

Rajib and Merwade (2016) used a time-dependent Soil Moisture Accounting approach
to calibrate the SWAT model and assess soil moisture at various levels in two watersheds in
Indiana. They found that using SM in the calibration process enhances the accuracy of
simulations and observed datasets, as well as improves efficiency metrics, which aligns with
the results of our work. Furthermore, it is noted that calibrating soil moisture based on in-situ
root zone soil moisture significantly enhances the performance of the SWAT model (Rajib et
al., 2016). Azimi et al. (2020) demonstrated that integrating satellite-derived soil moisture data
from SMAP and Sentinel-1 into the SWAT model enhanced the precision of river flow

predictions.

Multi-objective calibrated models are valuable for conducting water balance and water
accounting evaluations. These models are particularly beneficial for conducting national and
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international studies in transboundary basins (De Lannoy et al., 2022). Additionally, we want
to highlight that our study was limited by the challenge of capturing the variability in crop
yields across a wide range of collected data in this extensive basin. In future projects, this
limitation can be overcome by utilizing satellite-based datasets like LAI or canopy height

estimations.

It is advisable to assess how root zone soil moisture datasets, such the one from Grillakis
et al. (2021) or Copernicus Global Land service, might enhance the precision of the SWAT+
model. Satellite-based soil moisture data can be validated with in-situ observations to reduce
uncertainty in hydrological modeling. However, in large river basins, only short time series of
in-situ soil moisture may be accessible. Assessing the impact of multi-objective calibration on
crop production, evapotranspiration (ET), and infiltration rate might reduce the uncertainty in

comprehensive hydrological modeling.

5.3 Drought detection

This study assessed the spatial spread of various types of drought by utilizing one
regional and two gridded satellite-based precipitation datasets. Several research have utilized
satellite-derived information to estimate drought conditions in various regions worldwide and
compared these datasets with a trustworthy reference. Satellite-derived precipitation estimates
are recommended for drought evaluations and practical applications due to their ability to
accurately estimate small amounts of precipitation, reduce overestimations, and offer a reliable
assessment of the spatial distribution of low precipitation levels and events (Degefu et al.,

2022).

SPI is the most frequently employed drought indicator among several options available.
Koohi et al. (2021) said that the SM2RAIN-ASCAT data accurately identifies drought episodes,
particularly in agricultural and meteorological contexts, across a wide area. Their study chose
SPI-1, SPI-3, SPI-6, and SPI-12 to identify various types of droughts. The PERSIANN-CDR
data in Ethiopia accurately detected drought using the SPI as reported by Degefu et al. (2022).

6. Conclusion

In this thesis, a series of publications has been provided that delve into the improving
the accuracy of drought simulations via process-based agro-hydrological modeling and data-
driven methods and the use of satellite-based datasets, drought indicators, and modeling

techniques for understanding and predicting droughts, river discharge, and crop yields.
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¢ Drought indicators (SPI-1 to SPI-12) retain information from prior months and are
useful for crop yield and hydrological drought predictions using data-driven
techniques.

e The integration of satellite-based soil moisture data can significantly improve the
accuracy of process-based agro-hydrological models like SWAT+ in river discharge
and crop yield simulations.

¢ Shifting from single-objective to multi-objective calibration methods and including
using Artificial Intelligence methods have been demonstrated to improve the
simulation of drought indicators, river discharge and crop yields.

e Direct simulations of hydrological droughts are less reliable than indirect
simulations.

e The research also highlights the challenges with precipitation satellite-based
datasets and the need for careful dataset selection and calibration.

e The study shows that meteorological, agricultural, and hydrological droughts have
different spatial distributions, indicating distinctive spatial features for each form of
drought in the region.

According to the outputs and our methodology, we would like to continue our
exploration in the realm of satellite based datasets. There are several useful agro-hydrological
datasets, such as, amount of irrigation, snow cover, altimetry datasets for the height of water in
rivers and lakes, actual evapotranspiration, and precipitation datasets, which their accuracy is
still unknown and can be useful in agro-hydrological modeling. In addition, multi-aspect
calibration facilitates more investigations in transboundary river basins or other important
rivers. Additionally, due to the fact that there are several Al-based models, it is recommended

that it should be helpful to the hydrologists to test and try other methods in drought simulations.

Our results can be used in different governmental sectors such as agriculture and water
management. These sections can have assessments along with other sources of information to

have more robust and reliable decision.

7. Other achievements

During my PhD studies at Warsaw University of Life Sciences — SGGW, I had
opportunity to present my results in many outstanding international conferences such as EGU
(2023 and 2024), SWAT international conferences (2022, 2023, and 2024), IUGG 2023, and

other local conferences.
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My work and focus was on agro-hydrological modeling and drought, but during my
PhD, I used this unique opportunity at SGGW and delved into several topics such as water
accounting, groundwater management and modeling, water saving plans in basin level, and

extreme events. The list of other publications are listed below.

Beyond my academic pursuits and research, I was fortunate to participate in three
enriching internships. In 2022, I interned at IRPI-CNR in Italy under the supervision of Dr.
Luca Brocca and Dr. Christian Massari. The following year, in 2023, I had the opportunity to
intern at PIK in Potsdam guided by Dr. Tobias Condrat and UFZ in Leipzig, supervised by Dr.
Martin Volk Germany. These internships were funded by SGGW, Helmholtz Association
(HIDA, Germany), and NAWA (Poland). Hereby, I would like to acknowledge all of mentioned
organizations, and National Science Centre — NCN, Poland. This research was made possible
by the support of the National Science Centre (Narodowe Centrum Nauki), Warsaw, Poland
(PRELUDIUM BIS-1 project, UMO-2019/35/0/ST10/04392).

The list of articles published during my doctoral studies at SGGW, which are not

included in my thesis:

e Delavar, M., Raeisi, L., Eini, M. R., Morid S., Zaghiyan, M. R., (2024).
Assessing the effectiveness of water-saving plans from the farm level to the
basin level using agro-hydrological modeling approach and water accounting.
Journal of Irrigation and Drainage Engineering.

e Szyga-Pluta, K., Tomczyk, A. M., Piniewski, M., & Eini, M. R. (2023). Past and
future changes in the start, end, and duration of the growing season in Poland.
Acta Geophysica, 1-15.

e Salmani, H., Javadi, S., Eini M.R., & Golmohammadi, G. (2023). Compilation
simulation of surface water & groundwater resources using the SWAT-
MODFLOW model for karstic basin. Hydrogeology Journal.

e FEini, M. R., Motehayeri, S. M. S., Rahmati, A., & Piniewski, M. (2023).
Evaluation of the accuracy of satellite-based rainfed wheat yield dataset over an
area with complex geography. Journal of Arid Environments, 212, 104963.

e Piniewski, M., Eini, M.R., Chattopadhyay, S., Okruszko, T. and Kundzewicz,
Z.W., (2022). Is there a coherence in observed and projected changes in riverine

low flow indices across Central Europe?. Earth-Science Reviews, p.104187.
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e Eini, M. R., Rahmati, A., Salmani, H., Brocca L., and Piniewski, M. (2022).
Detecting characteristics of extreme precipitation events using regional and
satellite-based precipitation gridded datasets over a region in Central Europe.
Science of The Total Environment:158497.

e Delavar, M., Eini, M. R., Kuchak, V. S., Zaghiyan, M. R., Shahbazi, A.,
Nourmohammadi, F., and Motamedi, A. (2022). Model-based water accounting
for integrated assessment of water resources systems at the basin scale. Science
of the Total Environment, 830, 154810.

e Tomczyk, A. M., Piniewski, M., Eini, M. R., and Bednorz, E. (2022). Projections
of changes in maximum air temperature and hot days in Poland. International
Journal of Climatology, 42(10), 5242— 5254.

¢ Eini, M.R,, Olyaei, M.A., Kamyab, T., Teymoori, J., Brocca, L. and Piniewski,
M., (2021). Evaluating three non-gauge-corrected satellite precipitation
estimates by a regional gauge interpolated dataset over Iran. Journal of

Hydrology: Regional Studies, 38, p.100942.
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ARTICLEINFO ABSTRACT

In this study, the accuracy of two satellite-based datasets is evaluated. The evaluation includes monthly pre-
cipitation estimates, spatial detection of precipitation, and drought monitoring against a regional gridded dataset
spanning 2007-2019. A study area covering Poland and parts of the neighboring countries in Central Europe was
selected for this evaluation. The Standardized Precipitation Index (SPI) at multi-time scales was employed to
monitor meteorological (SPI-3), agricultural (SPI-6, SPI-9), and hydrological (SPI-12) droughts over the study
region. This study selected PERSIANN—CDR as a top-down precipitation dataset and SM2RAIN-ASCAT as a
bottom-up dataset. According to the results, both datasets exhibit good accuracy for precipitation estimations,
but PERSIANN—CDR shows higher accuracy based on the R (coefficient of correlation) and KGE (Kling-Gupta
Efficiency) performance indicators. However, SM2RAIN-ASCAT has a lower bias according to PBIAS(%) (percent
bias). The reference dataset indicates that the study area experienced dry conditions over 50% of the months.
Specifically, based on the reference dataset, 12 (SP1-6) and 16 (SPI-9) severe agricultural droughts were detected.
Twenty-four severe agricultural drought events were identified via SPI-6, while the longer SPI window (SPI-9)
demonstrated that PERSIANN—CDR assessed 20 severe droughts over the study area. SM2RAIN-ASCAT detected
11 severe agricultural droughts via SPI-6 and SPI-9. Furthermore, based on SPI-12, the reference dataset iden-
tified 75 hydrological droughts, while the top-down dataset indicated a lower number of hydrological droughts
(67 events) than the reference dataset over the studied period. In contrast, the bottom-up dataset detected 84
hydrological droughts. The spatial distribution of severe meteorological droughts showed a clear pattern with
predominant occurrence in eastern parts (Vistula River Basin), as shown by the reference dataset, while this
pattern changed for agricultural and hydrological droughts (Odra River Basin). Additionally, the results reveal
that meteorological drought does not have a similar spatial distribution to agricultural and hydrological
droughts.

Keywords:

Baltic Sea
Climate change
Satellite products
Drought

Rainfall

1. Introduction

Along with climate change, drought is one of the most complex
environmental threats, and it can considerably influence world security,
food production, inland water bodies, ecosystem, soc1ety, and the
ﬁnanc1al system ( H

H ). Drought could have different
deﬁnmons in different parts of the world due to the different intrinsic
values of water in different societies and regions. In the worst case,

* Corresponding author.
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drought can have an adverse effect on daily life; at the same time, in
other regions, it could limit recreational activities or maritime trans-
portation ( s ; ). The
description of drought can be divided mto various types, including
meteorological, hydrological, agricultural, and socioeconomic, based on
its influence ( ). The foremost type of drought
{meteorological drought) is caused by a shortage of rainfall which is
quickly tangible. This type of drought can expand rapidly and come to
an end abruptly. Prolonged precipitation deficiencies that trigger
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declines in the runoff, aquifer storage, dams, and lake levels will cause
hydrological drought. Accessible water in soil diminution can cause an
agricultural drought then. This type of drought appears throughout the
crop farming season and influences food production and security. The
effects of the aforementioned types of drought can additionally have an
effect on social and financial activities; this describes the socioeconomic
drought. However, these droughts do not effectively address drought’s
environmental aspects and are inclined to be too human-centric (
).

Drought indicators are widely employed for drought monitoring
( ). Nevertheless,
since drought attributes and classxﬁcatlons are complicated, no partic-
ular indicator can satisfactorily capture all characteristics of the
severity, frequency, and intensity of drought and its influences. Ac-
cording to , there are more than 150 drought indicators in
the literature. These indicators are applied to determine different forms
of drought, including SPI (Standardized Precipitation Index) (

), SPEI (standardized precipitation evapotranspiration index)
( ), SSI (standardized soil moisture index)
( ), RI (national rainfall index, Nationa! Oceanic and
Atmospheric), RAI (rainfall anomaly index) ( ), DRI
(vegetation drought response index) ( ), and DSI
(drought severity index) ( ). However, according to
WMO (World Meteorological Organization), SPI can be used as the
leading indicator for global drought monitoring because it is based on
only precipitation data, has more transparency, and has less calculation
complexity ( ;

; ). Numerous investigations were conducted to
evaluate the implementation of SPI in diverse climate regions, and most
of them stated that SPI has effectively recognized drought events. In
some studies, SPI is used not only as a meteorological drought indicator
but also as an indicator of agricultural and hydrological droughts (

). For instance, selected
SPI for 3, 6, 9 12, and 24-month time periods to determine temporal and
positional drought risks. In Taiwan, used SPI-3 for
drought analyses and suggested that SPI-3 is a better indicator compared
to SPI-1 for analyzing drought duration. selected
different windows of SPI (1, 3, 6, 9, 12, 18, 24, 48) over a basin in India
for drought analysis. also suggests that SPI values for 3
months or less could be useful for basic drought monitoring, values for 6
months for monitoring agricultural impacts and values for 12 months or
longer for hydrological impacts.

Precipitation datasets are essential for hydrology and environmental
assessments such as drought monitoring ( ). The tradi-
tional and, at the same time, the most accurate method is in situ mea-
surements (ground gage observations) ( ). Still, there are
several limitations, such as low spatial network, pricey maintenance,
delay in providing the data by regional authorities, and not being
accessible globally ( ; 3

H ). The
mentioned restrictlons can decrease the accuracy of drought monitoring,
especially over large-scale transboundary river basms or developing
countries ( ). In
contrast, some relatively new methods prov1de a homogeneous network
of the precipitation time series. These datasets have different categories:
reanalysis, gage interpolated, non-gage-corrected satellite-based pre-
cipitation estimates, and gage-corrected satellite-based prec1p1tatlon
estimates (

). Between these categones, satellite-based prec1p1tat10n esti-
mates offer (near) real-time and sub-daily datasets with high resolution
over the globe. Hence, satellite-based precipitation products are one of
the best options for drought monitoring, hydrological modeling, water
resources investigations, and climatic assessments ( ;

). In various studies ( ;
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), these products have been used in drought monitoring or hydro-
logical modeling as an alternative to ground-based datasets; however,
these datasets are not reliable in some parts of the world, and in some
regions, the accuracy of these products is still unidentified ( ).

As mentioned earlier, the datasets have different accuracy according
to the satellite’s sensor type, numbers of included ground-based mea-
surements, resampling methods, and processing algorithms (

5 ). Overall, two methods to
estimate prec1pitat10n using satelhtes are top-down and bottom-up ap-
proaches ( ). In the top-down
approach, the charactenstlcs of clouds (derived from remote sensing
methods) are of interest, such as the method used to develop the PER-
SIANN (Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks) family datasets (

). The second approach (bottom-up) is based on satellite-based
soil moisture datasets ( ). By using this method, some
new datasets are developed, which are relatively new (

), and the accuracy of these types of datasets in daily and monthly
precipitation datasets is unknown in some regions ( ).In
addition, comparing top-down and bottom-up approaches in drought
detection is an interesting topic to find the pros and cons of each
approach.

Based on the literature, there are no detailed analyses between top-
down and bottom-up approaches and their efficiency for drought
monitoring over Central Europe. In this study, SM2RAIN-ASCAT (a
satellite precipitation product developed by and
freely available on

) is selected as the representative of the bottom-up
approach, and PERSIANN—CDR (Climate Data Record) is employed as
the top-down precipitation product. Thus, two main objectives can be
considered in this study; first, comparing the accuracy of top-down and
bottom-up approaches over two large-scale transboundary basins in
Central Europe and Poland; second, monitoring different types of

Table 1
A review of selected recent studies which have used gridded datasets to assess
the drought using different drought indicators over different parts of the world.

Study Region Datasets Drought Period
Indicator
PAPUA new GSMAP and NDVI, 2001-2018
Guinea CMORPH VHI,
OLR, SPI
China PERSIANN—CDR, SPI and 1983-2015
CHIRPS, TRMM, PDSI 1998-2015
3B42v7
Regions of CHIRPS SPI 1987-2017
Iran
North PERSIANN—CDR, SPI 1983-2013
western CHIRPS, MSWEP
china
Mozambique =~ TAMSAT, FEWS SPI 2001-2012
NET, CHIRPS
Sri Lanka MODIS, TRMM, vCi, 2000-2019
GPM, GLC NDVI,
PCI, TCI,
IDSI
Iran TRMM TMPA 3B43 SPI, SPEI, 1983-2017
v7, CHIRPS, MSP1
PERSIANN—CDR
Ethiopia 20 products SPI 1984-2002
2009-2015
Spain CHIRPS and SPI 1991-2020
PERSIANN
China 17 datasets SPI 2019-2020
Iran SM2RAIN-ASCAT SPI 2007-2018
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droughts using SPI. Rainfed agriculture is dominant in this region, and
SPI for longer accumulation periods can be a reliable indicator of agri-
cultural droughts ( ). This research provides the first
evaluation of drought monitoring and accuracy evaluation of the
top-down and bottom-up approaches over the study region to help find a
reliable (near) real-time gridded dataset. In addition, by employing a
high-accuracy regional gridded dataset, we have made detailed spatial
comparisons between these datasets.

2. Methodology

This section describes the study area in Central Europe, precipitation
datasets, drought indicators, and statistical indicators used in this study.

2.1. Study area

Central Europe is a rugged region with colder winters, considerable
mountain snowfalls, and warmer summers, particularly in the lowlands.
Precipitation is adequate to abundant, with a summer maximum. This
study aims to cover the joint territories of Poland and the Vistula and
Odra (Oder) river basins, covering approximately 350,000 km? (

; ; ). Out of

] >
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that area, ~37,000 km? (~10.6%) is located beyond the Polish territory.
Ukraine (12,694 km?, 3.7%), Belarus (9495 km?, 2.7%), the Czech Re-
public (7397 km?, 2.1%), Germany (5298 km?, 1.5%), Slovakia (1800
km?, 0.5%) and Russia (401 km2, 0.1%) are located in the study area.
The long-term average precipitation over the study area is 661 mm
(2007-2019). In addition to Odra and Vistula river basins covering the
majority of this area, some minor parts of Baltic coastal, Pregolya,
Neman, Danube, Elbe, and Dniester river basins are included in the case
study ( ).

2.2. Precipitation datasets

Three gridded datasets were used in this study: two satellite-based
datasets SM2RAIN-ASCAT and PERSIANN-—CDR and one reference
dataset (G2DC-PL+: a gridded 2 km daily climate dataset for the union
of the Polish territory and the Vistula and Odra basins). It is based on
observed stations ( ) and developed by a geo-
statistical interpolation approach (kriging). This dataset has demon-
strated adequate accuracy in various investigations (

).
The datasets differed with respect to temporal availability and

G2DC-PL+ product extent
[—_1National borders
] Odra and Vistula catchments

0 50 100 200 Km
S TR N A N O O | A

Fig. 1. Selected study area (corresponding to the G2DC-PL+ product extent) in Central Europe - adopted from
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temporal/spatial resolution. The bottom-up dataset, SM2RAIN-ASCAT,
is a real-time dataset covering the 2007-now period at a daily time
step and a regular grid at 0.1-degree sampling (3600 x 1801) on a global
scale. SM2RAIN is a bottom-up process made on methods introduced by

, which can be used for direct rainfall estimation
from the station- and satellite-based soil moisture measurements
( - ). PERSIANN—CDR (as a top-down
dataset) delivers hourly to yearly precipitation data at 0.25° over
60N-60S and covers 2000-Now. PERSIANN—CDR is constructed to
meet the demand for a dependable, long-period, high-spatially distrib-
uted, and worldwide rainfall dataset for analyzing changes and trends in
daily rainfall. G2DC-PL+ was available for the longest period
1951-2019 at daily time step. displays key features of the
G2DC-PL+ (as the reference) and satellite-based products. We have
employed the 2007-2019 period as the joint time window to evaluate
the accuracy of satellite datasets and drought detection. All datasets
were recalculated to monthly time steps from their native temporal
resolution. In addition, G2DC-PL+ and SM2RAIN datasets were regrid-
ded to 0.25° x 0.25° resolution (spatial resolution of PERSIANN—CDR)
to facilitate grid-by-grid evaluations.

2.3. Drought indicators

The SPI is the commonly applied drought indicator proposed by
to reveal drought intensity and assess areas with
various environments based on rainfall. The precious aspect of the SP1 is
that it is simply calculated and adaptable over time, so it can be used to
recognize various forms of droughts and meteorological, agricultural,
and hydrological droughts. For example, used SPI-3 as a
proxy of meteorological drought, and in study, SPI-6
and SPI-12 were selected as the agricultural drought and hydrological
drought proxies.
The SPI computation is based on matching the best probability dis-
tribution function to the precipitation dataset, which
suggested as the Gamma function. The drought and wetness
definitions used in the current study, based on the SPI, are described in
. According to the definition, the positive values of SPI indicate
above the average precipitation (wet conditions), and the negative
values of SPI show below the average precipitation (dry conditions).
However, these definitions can be changed; for example, in some ref-
erences —1<SPI<1 is considered as near normal conditions (i.e.,

). We have employed SPI-3 as the proxy of meteorological
drought, SPI-6 and SPI-9 as the proxies of agricultural drought, and
SPI-12 as the proxy of hydrological drought (a similar approach is used
or suggested in s s

N , and ). (adopted from

) defines drought events and illustration of drought

attributes (run theory), which are discussed in this study. In this
research, SPI < —1 is identified as severe drought.

2.4. Evaluation indicators and employed tools

To evaluate the accuracy of SM2RAIN-ASCAT and PERSIANN—CDR
datasets in monthly rainfall estimations, Root Mean Square Deviation
(RMSD mm, optimum value = 0 mm), Percent bias (PBIAS%, optimum
value = 0%), Pearson Correlation Coefficient (R, optimum value = 1),

Table 2
Selected satellite-based precipitation products and reference dataset.
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Table 3

The employed classification of SPI in the current

study.
SP1 Classification
SPI >0 Wet conditions
SPI < 0 Dry condition
SPI< -1 Severe drought

and Kling-Gupta efficiency (KGE, optimum value = 1). These statistics
have been used in several studies, and some thresholds have been pro-
posed; however, different types of statistics have been applied in the
assessment of satellite-based precipitation products, but there are no
strict guidelines for using specific statistics ( H

> 3 >

).
The calculations were done in the R environment using the "CDT"
package ( 5 ). This package is
freely available and can be accessed at

and .
Regridding mentioned in was carried out in the "CDT"
package and also the "Raster" package (

) in R. The methodology used is presented in

3. Results and discussion

In this section, we first present the dataset evaluation results. Next,
we quantify meteorological drought using SPI-3. Assessments on agri-
cultural drought were analyzed by employing SPI-6 and SPI-9. Finally,
SPI-12 was used as the hydrological drought indicator. We then proceed
to evaluate different aspects of the accuracy of SPI estimations based on
satellite products.

3.1. Evaluation of satellite-based precipitation products

Using the regridding technique, all the datasets were set on 0.25° x
0.25° This technique helps to have a robust and more reliable evalua-
tion of datasets. The performance of both datasets is evaluated by RMSD
(mm), PBIAS (%), R, and KGE statistical indices. shows the
average and median of each performance indicator over the study re-
gion. According to RMSD (mm), both datasets have approximately
similar errors, but PBIAS (%) reveals that SM2RAIN-ASCAT has under-
estimated precipitation (~ -3%) at monthly scales, and PER-
SIANN—CDR overestimates precipitation (approximately 20%) against
the reference dataset. Correlation (R) shows that PERSIANN—CDR has a
higher agreement (~85%) with the reference dataset compared to
SM2RAIN-ASCAT (~75%). Finally, KGE again shows that, on average,
PERSIANN—CDR performs better relative to SM2RAIN-ASCAT at
monthly time steps. shows the variation of performance in-
dicators. According to , the bias of the SM2RAIN-ASCAT has less
variations than PERSIANN—CDR, and the range of RMSD (mm) shows
that both have approximately similar variations. The R range shows that
PERSIANN—CDR has lower variation and more acceptable results than
SM2RAIN-ASCAT against the reference data. Variation of KGE shows
that a larger share of this performance indicator is over 0.7 for PER-
SIANN—CDR than for SM2RAIN-ASCAT. While the range of variation of

Product Time span Spatial coverage Temporal Spatial Link
resolution resolution
G2DC-PL+ 1951-2019  Polish territory and the Vistula and Daily 2km x 2km
Odra basins
SM2RAIN-ASCAT 2007-2022 land Daily 0.1° x 0.1°
PSERSIANN—CDR  1983-Now  60°S to 60°N Daily to yearly 0.25° x 0.25°
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Fig. 2. Schematic description of drought event and illustration of drought attributes according to run theory, adopted from

Bottom-up
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Up-down
PERISANN-CDR

Regional dataset
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Monthly evaluations

Drougﬁt detections
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SPI<-1

3 &

Drought monitoring performance

Fig. 3. Flowchart of methods used in the current study.

Table 4
Average and median of performance indicators for monthly time steps
(2007-2019).

Performance indicator Satellite product Average Median

RMSD (mm) PERSIANN—CDR 22.00 21.55
SM2RAIN-ASCAT 23.86 23.07

PBIAS (%) PERSIANN—CDR 20.57 21.6
SM2RAIN-ASCAT -3.20 -3

R PERSIANN-CDR 0.87 0.87
SM2RAIN-ASCAT 0.75 0.75

KGE PERSIANN-CDR 0.72 0.73
SM2RAIN-ASCAT 0.65 0.75

KGE for SM2RAIN-ASCAT is similar to PERSIANN—CDR, a significant
share of KGE values for SM2RAIN-ASCAT is below 0.7.

The spatial distribution of the accuracy of satellite-based datasets
against the reference dataset is presented in . RMSD (mm) shows
that both datasets have higher errors over the southern parts of the study
area, which is a mountainous area. The minimum error of PER-
SIANN—CDR (~15.1 — ~19.6 mm, based on RMSD) is detected over the
central and eastern parts; in contrast, SM2RAIN-ASCAT shows better

accuracy based on RMSD (mm) over the western parts. Both datasets,
based on PBIAS (%), underdetermined precipitation over mountainous
areas (south of the study area), and the SM2RAIN-ASCAT has a better
estimation. PBIAS (%) pattern is almost similar in both datasets over
central regions, while SM2RAIN-ASCAT has a lower positive bias in
central parts (~2% - ~11%) relative to PERSIANN—CDR. According to
the correlation (R) between satellite-based datasets against reference
datasets, it is visible that SM2RAIN-ASCAT has a higher correlation over
mountains (R > 0.8) while having higher errors over this zone. PER-
SIANN—CDR has a higher correlation (R > 0.90) over the central and
eastern parts. Finally, KGE shows that the bottom-up approach can
provide better estimates over the southern area and lower estimates
close to the Baltic Sea (northern parts). The top-down approach can
provide a higher accuracy based on KGE for areas close to the Baltic Sea.
In accordance with this research results, based on PBIAS (%),
have shown that PERSIANN—CDR has a positive bias and

high correlation over China at monthly steps. However,

could not detect a high correlation between PERSIANN—CDR
and ground-based datasets over northwestern China.

show that PERSTANN—CDR has acceptable accuracy over Iran
based on PBIAS (%), RMSD (mm), and R. However, at daily time steps,
over a catchment in Poland, PERSIANN—CDR did not show acceptable
accuracy ( ). In addition, highlighted
that the SM2RAIN-ASCAT is an appropriate dataset for drought detec-
tion in most parts of Iran.

3.2. Drought detection

This section describes the results of different types of droughts using
the three aforementioned datasets. Meteorological drought via SPI-3,
agricultural drought via SPI-6 and SPI-9, and hydrological drought via
SPI-12 were assessed.

3.2.1. Meteorological drought detection

By employing SPI-3, which can capture seasonal or short-term
droughts, we have tried to assess the meteorological droughts over the
study area (2007-2019). First of all, G2DC-PL+ shows that the study
area has experienced 15 severe meteorological droughts (SPI-3 < —1) in
2011 (five events), 2015 (four events), 2018 (two events), 2008, 2009,
2014, 2019 (single events), and the worst meteorological drought
occurred in November 2011 (SPI-3 = —1.99). Also, based on the refer-
ence data, the intensity of severe meteorological droughts (SPI-3 < —1)
was, on average, —1.23, and in 2015, a four-month continuous severe
meteorological droughts (Jul. - Oct.) had the longest duration of severe
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Fig. 4. Variation of performance indicators by employing violin plot (2007-2019).

meteorological droughts over the study area. In total, meteorological
dry conditions (SPI-3 < 0) happened over 80 months (out of 154). This
result shows that in more than 50% of the months, the study area has
experienced meteorological dry conditions or below normal (Fig. 6). Our
results are also in accordance with the studies of Jonita et al. (2017) and
Laaha et al. (2017), which have shown that the 2015 drought events
strongly affected Central Europe, and some regions experienced the
driest and hottest summer over the 1950-2015. In another study, across
Poland, by Somorowska (2022), severe droughts in 2015, 2018, and
2019 were detected. In a transboundary catchment (Lusatian Neisse
river catchment) in the southwest of Poland, Otop et al. (2023), also by
employing SPI-3 and SPI-12, showed that a shortage of precipitation was
noticed from autumn 2017 to spring 2020, which is in line with our
findings.

The top-down dataset (PERSIANN—CDR) shows similar fluctuations
to the reference dataset in detecting SPI-3 as an indicator of meteoro-
logical drought. However, PERSTANN—CDR has estimated more severe
meteorological droughts (SPI-3 < —1) by 17 events. This dataset also
detects November 2011 as the worst condition (SPI-3 = —2.2); in 2015,
this dataset detected five-month continuous severe meteorological
droughts. PERSIANN—CDR also detected 78 dry meteorological condi-
tions (SPI-3 < 0), showing that approximately 50% of the period
meteorological below normal conditions happened in the study area.

SM2RAIN-ASCAT, a bottom-up dataset, was generally unable to
detect SPI-3 accurately (relative to PERSIANN—CDR) and has shown
less similarity to the reference dataset. SM2RAIN-ASCAT has shown 13
severe meteorological droughts and 73 meteorological drought events
over the study area. According to SM2RAIN-ASCAT, in February 2010,
the study area faced the worst situation (SPI-3 = —1.78) in the reference
dataset, and PERSIANN—CDR this month has a positive value for SPI-3.
Based on SM2RAIN-ASCAT, the study area faced a prolonged severe
meteorological drought in 2015 with six continuous drought events
(May. - Oct.). According to , SM2RAIN-ASCAT has a serious
problem in 2013 when it shows drought conditions as opposed to the
reference dataset showing wet conditions over several months. This is
particularly visible for SPI-6 and SPI-9.

3.2.2. Agricultural drought detection

SPI-6 and SPI-9 were used as representatives of agricultural
droughts. SPI-6 can present short- and mid-term effects of lack of pre-
cipitation on soil moisture. In other words, soil moisture deficit can be
seen after meteorological droughts and extended periods. In addition,
because farming activities are based on precipitation (rainfed farming)
in the study area, the longer window of SPI can be helpful for crop loss
detection. Hence, SPI-9 is also an agricultural drought indicator that can
capture all the growing season precipitation deficits. The time series of
SPI-6 and SPI-9 are presented in Fig. 6.

According to the reference dataset, 12 severe agricultural droughts
based on SPI-6 have occurred over the study area, and half happened
continuously in 2015. The worst condition occurred in August 2015
(SPI-6 = —1.6). In addition, the region’s dry conditions (SPI-6 < 0)
happened over 75 months. Based on SPI-9, 16 severe agricultural
droughts happened. The longest agricultural drought started in May
2015 and finished in February 2016, and the study area faced the worst
situation in October 2015 (SPI-9 = —1.59). In addition, 78 agricultural
drought events happened over the study region based on SPI-9 during
2007-2019. This result reveals that over 2015, massive soil moisture
deficits are expected in the study region. This result is in accordance
with Laaha el al. (2017) study, which mentioned that in 2015, Central
Europe was influenced by drought, and an area across the Czech Re-
public was most impacted.

The top-down dataset (PERSIANN—CDR) revealed 24 severe agri-
cultural drought events via SPI-6. The longest severe agricultural
drought happened in 2015 (Jun — Dec.) and 2018 (May — Nov.), with
seven ongoing severe events (SPI-6 < —1). The longer SPI window (SPI-
9) shows that PERSIANN-—CDR has estimated 20 severe agricultural
droughts over the study area. This product detected a nine-month
ongoing severe agricultural drought that began in May 2015 and
ended in January 2016. October 2015 has the lowest SPI-9 (-1.64) in
the study period.

SM2RAIN-ASCAT detected 11 severe agricultural droughts via SPI-6
and SPI-9. For both indicators, this dataset showed October 2015 as the
month with the harshest (SPI-6 = —1.74, SPI-9 = —1.8) agricuitural
drought over the study period. Based on SPI-6 and SPI-9, an ongoing
severe agricultural drought from June 2015 to March 2016 was
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Fig. 6. Evaluation of SPI time series estimated based on reference dataset,
identified by SM2RAIN-ASCAT.

3.2.3. Hydrological drought detection

Based on SPI-12, the reference dataset has detected the worst con-
dition in August 2015 (SPI-12 = —1.72), and this dataset detected 15
severe hydrological droughts (SPI-12 < —1). The longest period of se-
vere hydrological drought started in June 2015 and ended in May 2016.
During 2007-2019, 75 hydrological droughts were detected in the
reference dataset. In addition, the 2015 drought events are detected in
other studies, such as b , and
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PERSIANN—CDR, and SM2RAIN-ASCAT at various time scales over the study area.

, and it is mentioned that in some regions, low flow
droughts happened with return period over 100 years. The time series of
SPI-12 are presented in

PERSTANN—CDR shows fewer hydrological droughts over the stud-
ied period (67 events, SPI-12 < 0) than the reference dataset but
detected 20 severe hydrological droughts. The lowest SPI-12 happened
in August 2015 (—1.78), similar to the reference dataset. However,
PERSIANN—CDR shows that the longest severe hydrological drought
occurred from October 2018 to April 2019.

SM2RAIN-ASCAT detected 84 hydrological

droughts over
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2007-2019 based on SPI-12 < 0, and October 2015 was the worst
condition (SPI-12 = —1.66). Nevertheless, this dataset has detected 11
severe hydrological droughts over the study area from August 2015 to
Jun 2016.

3.3. Spatial distribution of severity

The spatial distribution of drought severity (SPI < —1, ) is
presented in . Based on the reference dataset, the severe meteo-
rological droughts were mainly concentrated in the eastern and northern
parts of the study area. In the northwest, less intense meteorological
droughts occurred, and PERSIANN—CDR does not exhibit a similar
pattern, indicating that severity based on SPI-3 happened in the western
parts. On the other hand, SM2RAIN-ASCAT shows that the northeast and
east experienced more severe droughts than other regions. Additionally,
based on this dataset, severe droughts were also detected in the middle
of the Odra River basin in the western part.

The datasets, however, exhibit a similar spatial pattern over the
central parts of the Odra River basin. This suggests a degree of agree-
ment between the datasets in this region regarding the severity of
meteorological droughts.

Considering the information presented in when interpreting
and comparing the spatial distribution of drought severity based on the
different datasets is important. The variations in patterns observed in
different regions highlight the importance of using multiple datasets to
assess drought conditions and impacts in the study area
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comprehensively.

Expanding the SPI window provides further insight, revealing that
the western part of the study area has experienced more severe droughts
based on the reference dataset. PERSIANN—CDR exhibits a pattern
similar to the reference dataset, particularly when based on SPI-6.
However, it becomes evident that severe meteorological droughts pre-
dominantly occur in the eastern parts, whereas agricultural and hy-
drological droughts have been observed in the western parts.
Unfortunately, the satellite datasets could not capture this movement or
spatial differentiation between the types of droughts.

The inability of the satellite datasets to detect such spatial variations
in drought types emphasizes the limitations and challenges associated
with using satellite-based products for drought detection. Different
drought types may have distinct characteristics and varying impacts on
different regions, making it essential to employ comprehensive and
localized assessments when studying drought patterns and their effects.
Overall, the expanded SPI window provides a clearer understanding of
the distribution of drought severity and highlights the need for cautious
interpretation and further investigation when using satellite datasets to
monitor and analyze drought conditions across different regions.

3.4. Drought detection performance

By employing the Taylor diagram, the performance of satellite
products was evaluated. shows that PERSIANN—CCS has a higher
correlation (0.97, SPI-3) than SM2RAIN-ASCAT, but the standard
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Fig. 7. Spatial distribution of drought severity (SPI < —1) over the study region (2007-2019).
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Fig. 8. Performance of each satellite-based dataset in drought detection against the reference dataset.

deviation of SM2RAIN-ASCAT is similar to the reference dataset (0.72,
SPI-3). By increasing the window of SPI (agricultural droughts and hy-
drological droughts), the correlation of SM2RAIN-ASCAT has increased
to approximately 0.8. According to , Although SM2RAIN-ASCAT
can detect hydrological and agricultural droughts rather than meteo-
rological droughts, PERSIANN-—CDR has a better correlation with the
reference dataset for all cases.

As mentioned in 1, several studies have used satellite-based
datasets for drought assessments over different parts of the world and
evaluated these datasets against a reliable source. Among the used
drought indicators, SPI is the most widespread drought indicator. For
example, mentioned that the SM2RAIN-ASCAT could
precisely detect drought events, predominantly agricultural and mete-
orological drought assessments, over most parts of the region. Their
research selected SPI-1, SPI-3, SPI-6, and SPI-12 to detect different
droughts. PERSIANN—CDR in Ethiopia showed accurate results for
drought detection based on SPI ( ).

Performing satellite-based rainfall estimations in drought assess-
ments is usually defined by their ability to detect the quantity and
geographical distribution and to catch high- and low-intensity rainfall
events ( ; ).
Satellite-based precipitation estimates are suggested in drought assess-
ments and real-world actions that adequately estimate tiny precipitation
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quantities, have lower overestimations, and provide a fair estimation of
the spatial variation of low precipitation quantity and events (
).

In addition to the previous studies, it is important to note that in the
current study, PERSIANN—CDR, selected from the PERSIANN family
encompassing a wide range of datasets, is a gage-corrected dataset. This
implies that the product is not solely based on satellite datasets; some
corrections utilizing ground-based datasets have been applied to
enhance its accuracy. On the other hand, SM2RAIN-ASCAT is a pure
satellite-based dataset without any post-processing. We recommend that
other researchers compare SM2RAIN-ASCAT (as the bottom-up precip-
itation dataset) with other members of satellite-based datasets to facil-
itate more robust comparisons. This approach will enable a
comprehensive evaluation of the datasets and their performances.

One of the uncertainties of this study could arise from the short
period of precipitation datasets. It is recommended that a minimum of
30 years of monthly precipitation datasets be needed in SPI evaluations

. However, according to the satellite-based datasets
and their limits, we have used 14 years in our evaluations, as
have used 13 years for the SPI evaluation of SM2RAIN-ASCAT.
To have robust assessments, according to , soil
moisture and evapotranspiration could be considered in drought de-
tections, in addition to meteorological parameters.
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4. Conclusion

This study used PERSIANN—CDR as a top-down precipitation data-
set and SM2RAIN-ASCAT as a bottom-up precipitation dataset. The ac-
curacy of both datasets for monthly precipitation estimates and drought
monitoring was evaluated against a regional gridded dataset covering
the period from 2007 to 2019.

According to our results, both datasets demonstrate good accuracy
for precipitation estimations. However, PERSIANN—CDR exhibits
higher accuracy when evaluated based on the R (coefficient of correla-
tion) and KGE (Kling-Gupta Efficiency) performance indicators. On the
other hand, SM2RAIN-ASCAT shows a lower bias according to PBIAS
(%), indicating that it tends to have a smaller overall deviation from the
observed values. The analysis of RMSD (Root Mean Square Deviation)
reveals that both datasets have higher errors over the southern parts of
the mountainous region of the study area. Interestingly, PER-
SIANN—CDR demonstrates the minimum error over the central and
eastern parts, whereas SM2RAIN-ASCAT shows better accuracy based on
RMSD (mm) over the western parts of the study area.

It is important to note that both datasets tend to underdetermine
precipitation over mountainous areas, as indicated by PBIAS (%). The
pattern of PBIAS (%) is relatively similar in both datasets over central
regions; however, SM2RAIN-ASCAT shows a lower positive bias in these
central parts compared to PERSIANN—CDR. Moreover, SM2RAIN-
ASCAT displays a higher correlation over mountainous areas, indi-
cating better agreement with observed values and higher errors in this
zone, On the other hand, PERSIANN—CDR exhibits a higher correlation
over the central and eastern parts of the study area.

Lastly, the evaluation based on KGE suggests that the bottom-up
approach (SM2RAIN-ASCAT) provides better precipitation estimates
over the southern area, while it tends to provide lower estimates close to
the Baltic Sea (northern parts). The top-down approach (PER-
SIANN-—CDR), on the other hand, offers better accuracy based on KGE
for areas near the Baltic Sea. Overall, these results indicate that each
dataset has its strengths and weaknesses in different regions of the study
area, and both approaches contribute valuable insights into the accuracy
of precipitation estimates for the given spatial distribution.

To detect drought, we utilized SPI-3 for meteorological drought, SPI-
6 and SPI-9 for agricultural drought, and SPI-12 for hydrological
drought. According to the reference dataset, the study area experienced
15 severe meteorological droughts (SPI-3 < -1) and meteorological
drought events (SPI-3 < 0) for a total of 80 months out of 154. The re-
sults indicate that the study area was affected by meteorological
droughts in more than 50% of the months.

Based on the reference dataset, 12 severe agricultural droughts were
identified using SPI-6 and 16 severe agricultural droughts using SPI-9
over the study area. On the other hand, the top-down dataset (PER-
SIANN—CDR) discovered 24 severe agricultural drought events through
SPI-6, while the longer SPI window (SPI-9) showed that PER-
SIANN—CDR assessed 20 severe droughts over the study area.
SM2RAIN-ASCAT, on the other hand, detected 11 severe agricultural
droughts via SPI-6 and SPI-9.

Regarding hydrological drought, the reference dataset detected 15
severe hydrological droughts (SPI-12 < —1) and a total of 75 hydro-
logical droughts (SPI-12 < 0). The top-down dataset (PERSIANN~—CDR)
indicated fewer hydrological droughts over the studied period (67
events, SPI-12 < 0) compared to the reference dataset, but it still
detected 20 severe hydrological droughts. In contrast, the bottom-up
dataset (SM2RAIN-ASCAT) detected 84 hydrological droughts over
2007-2019 based on SPI-12 < 0, with 11 being severe hydrological
droughts.

Additionally, our results revealed that meteorological drought does
not exhibit a similar spatial distribution pattern to agricultural and hy-
drological droughts. This indicates that different drought types may
have distinct spatial characteristics and patterns of occurrence in the
study area.
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ARTICLE INFO ABSTRACT

Keywords: Study region: The Weina catchment (52°30°~53°N and 16°35°-17°50’E) is a medium-sized, low-
Satellite-derived rainfall land catchment in the central part of Poland in Central Europe with a total catchment area of
Real-time 2621 km2.

Central Europe

Study focus: Research evaluating the performing of satellite-based precipitation datasets in Poland
and Central Europe is scarce. This study assesses the accuracy and implements five satellite-based
precipitation estimates in hydrological simulations. PERSIANN (a satellite-based precipitation
dataset) family datasets (consisting of PERSIANN, PERSIANN-CDR, PERSIANN-CCS, PDIR-NOW,
PERSIANN-CCS-CDR) was evaluated in daily steps and seasonal steps against a regional gridded
dataset (G2DC-PL+) in the period 2003-2019. Soil and Water Assessment Tool+ (SWAT-+), a
relatively new eco-hydrological model, was employed to simulate runoff in daily time steps.
New hydrological insights for the region: Our results revealed that PERSIANN family products could
accurately detect precipitation events according to POD, FAR, and CSI indicators. PERSIANN-CDR
has a better correlation in the northern and central parts, and shows low accuracy in the
southeastern catchment with a higher altitude. A similar pattern is observed in PDIR-NOW and
PERSIANN-CCS for R% Moreover, the SWAT+ results demonstrate that G2DC-PL+ could be a
reliable source alternative to gauge data in runoff simulations. PERSIANN-CDR performed slightly
better in runoff simulations compared to other gridded datasets.

High resolution
Gridded dataset

1. Introduction

Recent developments in global gridded datasets have facilitated worldwide simulations in hydrology, environment, crop yield,
climate change, and Earth system processes in general. For example, several gridded climatic parameters, namely soil moisture, land
use, cropping systems, living species, or even sea level fluctuation datasets have been developed and used over the recent decades.
Moreover, several products and outputs of models at a global or regional scale have been released, and are publicly accessible (

).
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These datasets cover most of the land surface and atmosphere parameters, and each parameter has its own accuracy and char-
acteristics. Precipitation is the most essential and primary input in several hydrological or ecohydrological models (

). The parameter plays the main role in the hydrological process. Its accuracy in gauge recorded or gridded
datasets has a significant effect on model outputs. A minimum of 30 years of daily precipitation dataset is suggested to sufficiently
capture long-term climate conditions such as drought and its effect on parameters within hydrological models (

). Moreover, in hydrological evaluation, a reliable rainfall database leads to a more precise simulation of runoff,

Table 1
Review of studies employing the SWAT model and global precipitation datasets with a focus on the PERSIANN family of satellite precipitation.
Study Region Datasets Time period  Result
Ethiopian highlands CMORPH, TMPA 3B42RT, 2003--2007 PERSIANN has poor or no skills for runoff simulations.
TMPA 3B42, PERSIANN
A Mountainous CMORPH, TRMM, TMPA 2003-2008 The 3B42RT and CMORPH products perform better than the
Watershed in Ethiopia ~ 3B42RT, TMPA 3B42, 3B42 and PERSIANN.
PERSIANN
Vietnam river basin APHRODITE, TRMM, 1996-2006 APHRODITE dataset performed very well on a daily scale
PERSIANN, GPCP, GHCN2, simulation and PERSIANN did not show good performance.
NCEP/NCAR
A Humid regions in PERSIANN-CDR, TRMM 2004-2013 PERSIANN-CDR and 3B42V7 show encouraging potential
China 3B42V7, NCEP-CFSR for runoff simulation over the two humid regions.
Malaysia APHRODITE, PERSIANN-CDR, 1983-2007 The results present that the APHRODITE performed better
NCEP-CFSR in precipitation estimation, followed by the PERSIANN-CDR
and NCEP-CFSR.
Vietnam APHRODITE, CFSR, PERSIANN,  2000-2006 TRMM and APHRODITE show better match to rain gauges
TRMM data in simulating the daily and monthly runoff.
A semi dry basin, Iran  PERSIANN-CDR 1983-2013 PERSIANN-CDR has low accuracy in estimating
precipitation and runoff simulation.
Xiang River Basin, CMADS, NCEP-CFSR, TRMM, 2009-2014 CMADS and TMPA are better than PERSIANN-CDR and
China PERSIANN-CDR NCEP-CFSR in correlation with observed data and runoff
simulation.
Luanhe River Basin, TRMM 3B42RT, TRMM 3B42, 2001-2012 The TRMM 3B42 present a better hydrological
China PERSIANN performance, while PERSIANN shows unsatisfactory
hydrological performance.
Han River Basinin the =~ TRMM, PERSIANN, PERSIANN- 2008-2013 TRMM and CMADS can be used to simulate the streamflow
Korean Peninsula CDR, CMADS of the Han River Basin with acceptable accuracy.
Tigris River Basin in PERSIANN-CDR, MSWEP, 1983-1997 APHRODITE has better performance in monthly runoff
Iraq APHRODITE, CPC simulations.
Southwest China TMPA 3B42V7, PERSIANN- 2004-2008 TMPA 3B42V7 and PERSIANN-CDR present good capability
CDR, NCEP-CFSR for streamflow and sediment simulations on a monthly time
step.
Ethiopia CFSR, CHIRPS, PERSIANN-CDR, ~ 1985-2004 CHIRPS, PERSIANN-CDR, and TRMM performed well for
TRMM monthly runoff simulations.
Mekong River Basin, AgMERRA, MSWEP, PERSANN-  2000-2007 MSWERP is better than other three products in term of both
East Asia CDR, TMPA the model performance and parameter uncertainties.
South Carolina, USA TRMM 3B42, TRMM 3B42RT, 2001-2014 TRMM 3B42 and PERSIANN-CDR had better performance
PERSIANN-CDR, PERSIANN, whereas CFSR and PERSIANN relatively performed poorly
GPCP, CFSR for runoff and water quality simulations.
Upper Huaihe River CMADS, TRMM, CMORPH, 2008-2016 CMADS and CMORPH perform the best, followed by TMPA
Basin, China CHRISP, PERSIANN-CDR 3B42V7, CHIRPS, and PERSIANN-CDR.
Vietnam TMPA", GPM", CHIRP, 2002-2017 GPM exhibited the best overall performances among other
PERSIANN, PERSIANN-CDR datasets in comparison with the rain gauges for the
simulation of runoff.
Northeastern China TMPA 3B42V7, PERSIANN-CDR  2002-2015 TMPA 3B42V7 and PERSIANN-CDR have satisfactory result
in runoff simulation.
El Salvador CFSR, MSWEP, PERSIANN- 2005-2010 PERSIANN-CDR produced the best simulation results,
CDR, CMORPH, CHIRPS including runoff simulation.
Tuojiang River Basin, CFSR, TRMM, PERSIANN-CDR 1980-2000 TRMM have the best performance among the other gridded
China datasets.
Western Nepal CHIRPS, PERSIANN-CDR, 1986-2015 IMERG proved to be superior among three datasets.
IMERG
A humid region of CHIRPS, TMPA, CMORPH, 2000-2014 TMPA provides the most accurate hydrological model

southern China

PERSIANN

simulation results.

2 Varies for different datasets.

b Different products.
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flood/drought, and management decisions ( ). The analysis of the characteristics of global
precipitation datasets is therefore a crucial stage in applying them in evaluations of water resources at a global or regional scale
( ).

The precision of precipitation gridded data depends on the source of raw data, development method, and region (

). These datasets are generally categorised into gauge-corrected (relatively more accurate)
or non-gauge-corrected (relatively less accurate). Another classification designates satellite-derived, gauge-interpolated,
ground-based weather radar, and reanalysis products. provide a detailed review of 30 precipitation gridded
datasets.

In recent years, satellite-derived gridded datasets presenting wider and higher spatial distribution and resolutions (up to global
scale and 16 km? cell sizes) ( ) as well as higher temporal resolution (sub-hour to yearly time steps) (
) have been considered a reliable alternative to point-based network for areas with no suitable point-based network coverage in
hydrological simulations ( ).
Among different satellite-derived precipitation gridded datasets, PERSIANN family datasets are some of the most commonly used
satellite-based gridded datasets in hydrological simulations (

). This family of precipitation datasets covers five different datasets, namely PERSIANN,
PERSIANN-CDR (Climate Data Record), PERSIANN-CCS (Cloud Classification System), PDIR-NOW (Dynamic Infrared (IR) Rain Rate
near real-time), and PERSIANN-CCS-CDR (Cloud Classification System-Climate Data Record) (
).

The Soil and Water Assessment Tool (SWAT) model has been comprehensively employed worldwide to evaluate agro-hydrological
processes ( ). In the SWAT model, point-based weather
gauge observations are frequently used to drive the model. In data-scarce regions, transboundary basins, and large scale or worldwide
studies, however, gridded datasets have still been employed to cover the lack of observed datasets, or instead of them (

). presents a review of studies combining the SWAT model and gridded datasets by
focusing on PERSIANN family products.

According to studies mentioned in , the accuracy of the PERSIANN products in runoff simulations is still unknown in most
regions, and particularly in Europe. PDIR-NOW and PERSIANN-CCS-CDR are relatively new products that require assessment in hy-
drological simulations in different regions.

Research evaluating the performing of satellite-based precipitation datasets in Poland and Central Europe is scarce. This study
addresses the gap. It has two main objectives, namely (a) comprehensive assessment of the accuracy of precipitation acquired from the
PERSIANN family of satellite products, and (b) evaluation of the performance of these products in runoff simulations over a watershed
in Poland using the SWAT+ model ( ).

Throughout the study, we benchmarked the PERSIANN family of satellite products with reference to a gauge-based precipitation
dataset, namely G2DC-PL+ ( ) in the context of hydrology and meteorology.

2. Methodology
2.1. Case study

The Wena catchment (52°30’--53°N and 16°35’-17°50’E) is a medium-sized and flat catchment in the central part of Poland. It
was selected as the study area ( ). The Welna River and its tributaries are part of the natural Polish river network of the
Wielkopolska Lowland. The long -term average (1990-2019) precipitation and temperature for the area reach 561 mm and 9 °C,
respectively. The stream network with its huge valleys and narrow lakes was formed in the late Pleistocene and Holocene as a result
of the retreat and melting of glaciers ( ). The total catchment size of the Welna River up-
stream from the flow measuring station is 2611 km? Weina flows into the Warta river, the largest tributary of the Odra river flowing
into the Baltic Sea. The catchment is covered by forest and rainfed agricultural areas, with several scattered urban areas. Three
discharge stations measure discharge in the catchment. The annual average flow is approximately 10 m>/s (

).
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Fig. 1. Location of the Welna River catchment in Poland, lakes, stream network, subbasins, and DEM.
2.2. Precipitation datasets
2.2.1. PERSIANN products
PERSIANN satellite-based products are developed by the University of California, Irvine (UCI) ( ). An online

website (
globally (

cell centers is presented in

) is provided by developers to download all these datasets for different regions and basins, or
). This family of precipitation datasets covers five different products: PERSIANN, PERSIANN-CDR,
PERSIANN-CCS, PDIR-NOW, and PERSIANN-CCS-CDR, selected for the period 2003-2019 in this study (

). The location of

. In addition, the PERSIANN system is based on both Geostationary Earth Orbiting (GEO) satellites and
Low Earth Orbiting (LEO) satellites (

).
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Table 2
Characteristics of precipitation datasets used in the study.
Product Time span Spatial coverage Temporal Spatial Link
resolution resolution
G2DC-PL+ 1951-2019  Polish territory and the Vistula daily 2km x 2 km
and Odra basins
PERSIANN 2000-Now  60°S to 60°N hourly to yearly  0.25° x 0.25°
PERSIANN-CDR 1983-Now  60°S to 60°N daily to yearly 0.25° x 0.25°
PERSIANN-CCS 2003-Now  60°S to 60°N hourly to yearly  0.04° x 0.04°
PDIR-NOW 2000-Now 60°S to 60°N hourly to yearly  0.04° x 0.04°
PERSIANN-CCS- 1983-Now 60°S to 60°N 3-hourly to 0.04° x 0.04°
CDR yearly
z 16°40'0"E 17°30'0"E
o h I z
?;)"&::C-- .-n.‘cosoaoo‘o-oo.&c N 4";8
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Fig. 2. Location of cell centers of each product over the study area.

2.2.1.1. PERSIANN. The current operational PERSIANN employs machine learning methods to determine an estimation of the pre-
cipitation ratio at each 0.25° x 0.25° pixel of the IR brightness temperature image. The PERSIANN method was built on geostationary

IR imagery, and later expanded to involve both IR and DVI ( ).

2.2.1.2. PERSIANN-CCS. PERSIANN-Cloud Classification System (PERSIANN-CCS) is a real-time high resolution (0.04° x 0.04°)
satellite-based precipitation dataset that enables the classification of cloud-patch features based on cloud height, areal extent, and

variability of texture calculated from satellite imagery ( ).

2.2.1.3. PERSIANN-CDR. ‘PERSIANN-CDR provides daily precipitation values at 0.25° over 60N-60S. PERSIANN-CDR is designed to
meet the need for a reliable, long-term, high-resolution, and global precipitation dataset for analysing variations and trends in daily
precipitation, and particularly extreme precipitation events. PERSIANN-CDR is developed based on the PERSIANN method utilizing
GridSat-B1 data, and adjusted by the GPCP product to provide the reliability of the two datasets at 2.5° ( ).

2.2.1.4. PDIR-NOW. PDIR-NOW is a real-time global high resolution (0.04° x 0.04°) satellite-based product relying on high fre-
quency sampled IR imagery. The latency of PDIR-NOW from the time of precipitation event is very short. PDIR-NOW also accounts for
the uncertainties and errors that arise from IR imagery by implementing a range of techniques most significant is the dynamic shifting
of (Tb-R) curves using precipitation climatology. The short latency of PDIR-NOW renders the dataset well-fit for near-real-time hy-
drological applications such as flood predictions and developing flood maps ( ).

2.2.1.5. PERSIANN-CCS-CDR. PERSIANN-CCS-CDR resolutions are 0.04° x 0.04° and 3-hourly (1983-now) over the domain of 60°S
to 60°N. PERSIANN-CCS-CDR is developed to provide rainfall with a finer resolution and a more extended period of data. PERSIANN-
CCS-CDR combines the algorithms utilised in the development of PERSIANN-CCS and PERSIANN-CDR, and employs data from GEO
satellites as input data. In this method, the PERSIANN-CCS method is employed to Gridded satellite (GridSat-B1) and CPC-4 km
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Fig. 3. Monthly and annual variability of precipitation in the study area.

merged IR datasets. The evaluations are then bias-corrected by applying the GPCP product to the entire period of the dataset (
)

2.2.2. Reference dataset

This study employs a gridded daily climate dataset (G2DC-PL+). It is publicly available for the period 1951-2019 used as the
reference dataset. The dataset stores daily data for precipitation, Tiin, Tmax, humidity, and wind speed. Geostatistical techniques
(kriging) were applied to interpolate the studied climate variables in this dataset. The dataset was developed by

Comprehensive details regarding the methods and accuracy are available in and LA
brief description of the dataset and the PERSIANN family is included in ) presents monthly and annual changes in
precipitation in all the datasets. As shown in , PDIR-Now, PERSIANN-CDR, PERSIANN-CCS, and PERSIANN were not able to

capture the precipitation behavior in 2011, and there is a systematic error in 2011 over this region in these products.

Each cell center from each satellite product and reference dataset was extracted based on each subbasin’s centroid for the eval-
uation process. This method permits a robust comparison for hydrological simulation and precipitation evaluation, because each
subbasin has precipitation precisely at the same points.

2.3. SWAT+ model

This study employed a new version of SWAT dubbed as SWAT+ (rev. 60.5.3) on a QGIS interface (QSWAT+ 2.0.6) and SWAT+
Editor (version 2.0.4) ( ). SWAT+ is an improved and widely revised version of the SWAT
model. SWAT+ is an open-source, continuous-time, process-based, semi-distributed model developed by the USDA (Agricultural
Research Service) for modeling hydrological cycle. It is efficient of continuous modeling over long and short periods (

).

SWAT+ is relatively new and has several advantages, such as flexibility in defining the connection between different objects (lakes,
aquifers, rivers, and other physical objects) in a basin decision table to simulate management. It is based on free software, and is more
user-friendly ( ). A full description of SWAT and SWAT+ background, tools, and literature
database is available at .

The Welna catchment was divided into 255 subbasins, 450 landscape units, and 1504 hydrologic response units (HRUs), including
25 natural lakes. Based on the consideration of three years of a warm-up period (2001-2003), three discharge stations were calibrated
(2004-2011) and validated (2012-2019) at daily time steps. The Penman-Monteith method was selected as the potential evapo-
transpiration method. The source of discharge as well as radiation data was the Institute of Meteorology and Water Management,
Warsaw, Poland). The map of the subbasins, stream network, and discharge stations is presented in

The calibration process first involved the calibration and validation of the SWAT+ model with the G2DC-PL+ dataset. Then, based
on similar parameters, SWAT+ was calibrated and validated using PERSIANN family products.

2.4. Performance evaluation indices and tools

The assessment of the accuracy of PERSIANN products and runoff simulation performance involved the application of the following
statistics at daily time steps: R? (coefficient of determination), NSE (Nash-Sutcliffe Efficiency), KGE (Kling-Gupta Efficiency), RMSE
(Root Mean Square Error, mm), and PBIAS (Percent bias indicator, %). Moreover, three categorial indices were employed (by
considering a 2-mm threshold), namely Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI).
These performance indicators have been previously used for the evaluation of global datasets or models versus observed datasets in
several studies such as , and . The calculation of these indices was based on “hydroGOF”,
and “CDT” ( ) in R. The details and equations of these statistics can be found at



M.R. Eini et al. Journal of Hydrology: Regional Studies 41 (2022) 101109
3. Results and discussion

We first evaluated the accuracy of each dataset against G2DC-PL+ in overall and seasonal time frames, followed by the evaluation
of hydrological modeling. Finally, the accuracy of PERSIANN products was investigated in runoff simulation.

3.1. Evaluation of PERSIANN products

The evaluation of the accuracy of PERSIANN products employed daily datasets over the Welna catchment. Our evaluation
considered the weighted average method, where the distance from the given centroids gives the weight.

3.1.1. Overdll evaluation of precipitation estimates

We extracted precipitation values for the centroids of each subbasin. According to Table 3, PERSIANN-CDR (R? = 0.23) and PDIR-
NOW (R? = 0.22) show better correlations in comparison to other products. Lower PBIAS (%) is observed in PERSIANN-CCS (2.38%),
followed by PERSIANN (— 12.14%). RMSE (mm) shows that these products feature rather low similarities, and RMSE varies between
3.67 mm (PERSIANN-CCS) and 5.73 mm (PERSIANN). The NSE index, sensitive to outliers, shows negative values for all products, and
the best value is — 0.24 (PERSIANN-CCS).

According to Fig. 4, PERSIANN-CDR shows a better correlation in the northern and central part, and has low accuracy in the
southeastern catchment with a higher altitude. A similar pattern is observed in the case of PDIR-NOW and PERSIANN-CCS for RZ,

PERSIANN-CCS underestimated precipitation in the southeastern and central parts {— 6.7% to — 1.5%), and overestimated
(14.8-5%) it northwest of the Welna catchment according to the PBIAS indicator. PERSIANN-CDR (28-42%), PDIR-NOW (59-81%),
and PERSIANN-CCS-CDR (29-43%) overestimated precipitation values (Fig. 4).

RMSE (mm) indicator shows a lower error for PERSIANN-CCS in the northern and southwestern part of the catchment. PDIR-NOW
shows no uniform or discernible pattern over the catchment. The difference between the maximum and the minimum RMSE for all

Table 3

Results of the comparison of PERSIANN family products against G2DC-PL+.
Name PERSIANN PERSIANN-CCS PERSIANN-CDR PDIR-NOW PERSIANN-CCS-CDR
R? 0.11 0.12 0.23 0.22 0.06
PBIAS (%) -12.14 2,38 35.55 69.80 35.91
RMSE (mm) 5.73 3.67 3.76 4.45 4.77
NSE -2.04 -0.24 -0.31 -0.83 -1.10
POD 0.56 0.69 0.81 0.93 0.61
FAR 0.24 0.26 0.29 0.34 0.34
CSI 0.48 0.55 0.61 0.63 0.47
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products is generally less than 2 mm, with no strong pattern. The error variations over the catchment are also low for the NSE in-
dicator, with no distinguishable patterns ( ).

The POD and FAR statistics describe the core of the inaccuracies by gridded data. The detection skills are provided in and

. POD demonstrates superior performance of PDIR-NOW in detecting precipitation in the western parts (0.8-0.82), with a

spatial average of 0.93, followed by PERSIANN-CDR (0.81). The POD range for other products is between 0.56 and 0.69. It could be

considered an acceptable range for all products. According to FAR, PERSIANN has better accuracy (0.24), although all products

provide good results (0.26-0.34), with no discernible patterns over the catchment area. CSI performance illustrates average accuracy

for these products in events detection by the PERSIANN family (0.47-0.63). PDIR-NOW shows the highest performance compared to

other datasets.
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Table 4
Seasonal comparison of performance indicators for PERSIANN family products over the study area.

Season Name PERSIANN PERSIANN-CCS PERSIANN-CDR PDR-NOW PERSIANN-CCS-CDR

Spring R? 0.27 0.19 0.26 0.34 0.06
PBIAS (%) -42.90 -0.37 3417 50.70 40.26
RMSE (mm) 2.66 2.95 3.21 3.20 4.34
NSE 0.09 -0.13 -0.33 -0.32 -1.44
POD 0.52 0.67 0.84 0.93 0.56
FAR 0.23 0.28 0.33 0.38 0.40
CS1 0.45 0.53 0.59 0.60 0.41

Summer R? 0.12 0.22 0.26 0.29 0.06
PBIAS (%) 12.31 -41.21 18.57 43.08 5.19
RMSE (mm) 9.45 4.23 4.68 5.22 5.82
NSE -3.14 0.17 -0.01 -0.26 -0.57
POD 0.64 0.69 0.80 0.91 0.61
FAR 0.21 0.22 0.24 0.28 0.31
CsI 0.55 0.58 0.64 0.67 0.48

Fall R? 0.02 0.11 0.18 0.10 0.02
PBIAS (%) -13.74 22.05 45.69 109.06 49.42
RMSE (mm) 4.70 3.37 3.30 4.80 4.45
NSE -2.10 -0.69 -0.53 -2.24 -1.78
POD 0.54 0.64 0.79 0.91 0.57
FAR 0.32 0.34 0.34 0.38 0.39
CSIL 0.43 0.48 0.56 0.59 0.42

Winter R2 0.05 0.08 0.07 0.11 0.19
PBIAS (%) 80.62 69.20 -28.48 96.61 61.15
RMSE (mm) 2.71 3.93 3.25 4.05 3.43
NSE -2.82 -2.08 -0.46 -2.27 -1.35
POD 0.68 0.75 0.52 0.96 0.84
FAR 0.28 0.23 0.25 0.33 0.26
CSI 0.53 0.61 0.44 0.66 0.65

3.1.2. Seasonal evaluation precipitation estimates

The evaluation of seasonal accuracy employed the Taylor diagram. According to this diagram, in spring (MAM), PERSIANN shows
the highest accuracy (RMSE = 2.66 mm), followed by PERSIANN-CCS (RMSE = 2.95 mm). According to and , in MAM,
PDIR-NOW shows higher correlation (R = 0.34), and PERSIANN-CCS-CDR has the weakest accuracy according to the correlation
coefficient. Similarly, in summer (JJA), PERSIANN-CCS-CDR shows the lowest correlation. It also has the lowest PBIAS (5.19%). The
highest correlation (R? = 0.29) and detection ability (POD = 0.91, and CSI = 0.67) in JJA is recorded for PDIR-NOW. PERSIANN-CCS
has the lowest RMSE (4.23 mm), but it is not far from PERSIANN-CDR (RMSE = 4.68 mm).

During Fall (SON), PERSIANN-CDR performed better according to RMSE = 3.30 mm, NSE = — 0.53, and R2. Like MAM, JJA, in
winter (DJF), PDIR-NOW detected precipitation more accurately than other SON products. Finally, in DJF, PERSIANN-CDR performed
relatively better than other products.

In the current case study, the catchment experiences high intensive precipitation during JJA; the following studies also have shown
similar results in similar conditions (intense precipitation in summer). In this regard, showed the smallest correlation
for PERSIANN-CDR among four gridded precipitation products in a subtropical humid monsoon climate zone in China. Over a tropical
zone, revealed that PERSIANN-CDR data resulted in a slight underestimation of the observed dataset in a catchment in
the north of Malaysia, and an overestimation of precipitation in the southern parts of Malaysia. In Korea, over a humid monsoon
climate zone, showed that TRMM and CMADS perform better than PERSIANN and PERSIANN-CDR when compared to
rain gauge measurements which the major part of surface runoff and precipitation (70%) occur during the monsoon season
(June-September). In a similar monsoon climate zone in the west of China, tested five gridded datasets, and
concluded that PERSIANN-CDR has the lowest correlation and detection ability, and the highest error compared to the observed
dataset. In the Mekong River Basin, with diverse climate zones (temperate to tropical), PERSIANN-CDR also had the lowest rank and
accuracy among four gridded datasets ( ). Moreover, like our study, other studies also have shown the insufficient
accuracy of PERSIANN products in hydrological simulations and against the observed dataset in different regions (

). In most of the aforementioned studies, the PERSIANN family has shown good detection ability regarding
POD, FAR, and CSI indicators.

According to various studies, precipitation estimates during summer are less accurate due to convective precipitation (which exists

in the current case study) and the difficulty of measuring these precipitations by radars (

).
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3.2. Evaluation of hydrological modeling using G2DC-PL+

The calibration and validation results demonstrate sufficient accuracy of G2DC-PL+ in runoff simulations. According to the KGE
performance indicator, the model at all three discharge stations showed acceptable performance. presents the calibration and
validation results. shows the simulated and observed time series (station C). provides selected parameters and the final

range.
Table 5
Accuracy of the SWAT+ model with various precipitation datasets in the calibration and validation phases.
Calibration Validation
KGE PBIAS% KGE PBIAS%
Station A
G2DC-PL+ 0.73 -1.6 0.67 -11.7
PERSIANN -11 17.5 9 19
PERSIANN-CCS -0.69 -59.7 -1.5 -31
PERSIANN-CDR -0.5 -43 -0.97 -51
PDIR-NOW -1.29 66.6 -4.95 89
PERSIANN-CCS-CDR -2.17 120 -2.59 174
Station B
G2DC-PL+ 0.74 1.6 0.62 -22.6
PERSIANN -8 -26.2 -7 135
PERSIANN-CCS 0.14 36.6 0.09 55
PERSIANN-CDR 0.08 64.1 -1.2 73
PDIR-NOW -0.6 -8.6 -3.98 136
PERSIANN-CCS-CDR -0.14 -69 -1.25 -73
Station C
G2DC-PL+ 0.79 2.2 0.65 28.2
PERSIANN -9.4 180 -8 125.9
PERSIANN-CCS 0.31 153.9 0.22 138.1
PERSIANN-CDR 0.34 153.3 0.13 197.1
PDIR-NOW -0.33 408.4 -1.51 381.5
PERSIANN-CCS-CDR 0.07 2222 -3.59 198.9
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Fig. 7. Observed and simulated runoff (discharge station C) by SWAT+ for all precipitation products for the calibration period 2003-2019.
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Table 6

Selected SWAT+ parameters in the calibration and validation process.
Parameter Object Minimum Maximum
r*_k sol -0.21 -0.13
r_bd sol -0.20 -0.19
I_awc sol -0.26 -0.23
r_cn2 mgt 0.07 0.10
V*_ovn hru 0.33 0.45
V_lat_ttime hru 11.97 12.82
V_canmx hru 2.84 3.30
V_esco hru 0.99 0.99
V_epco hru 0.11 0.14
V_perco hru 0.90 0.91
V_surlag hru 14.13 15.12
V_alpha aw 0.02 0.02
V_bf max gw 0.86 0.89
V_deep_seep gw 0.19 0.20
V_flo_min aw 1.50 2.90
V_revap_co gw 0.17 0.19
V_revap_min gw 135.45 187.79
V_sp.yld gw 0.12 0.13
V_chn rte 0.03 0.03
V_chk rte 1.72 1.83

r: relative change; V: replace value.

3.3. Evaluation of the accuracy of PERSIANN products in runoff simulation

After the calibration process for each product, the PERSIANN family showed no acceptable results in runoff simulations in our study
( ). The range of KGE for these products is from — 11 to 0.34, and PBIAS has shown high errors out of the acceptable range in the
simulated runoff. illustrates the observed and simulated runoff for Station C.

The hydrological model configuration and calibrated parameters, as well as the driving data are the three significant sources of
uncertainty that can influence the performance of runoff modeling. Inaccuracies in rainfall input can produce substantial uncertainties
in runoff simulations ( ).

Similar to our results based on the SWAT model, concluded that the PERSIANN-CDR product performed poor
and unsatisfactory runoff simulations at monthly and daily time steps in a catchment in Ethiopia. In this study, the CHIRPS performed
the best among the satellite precipitation products in the statistical assessments and daily and monthly runoff simulations. Our results
also confirm the assumption made by : and that BIAS of precipitation products affects the accuracy
of runoff simulation in water resources models. Over a humid area in southern China, among the four satellite-based precipitation
products, CMORPH and TMPA achieved runoff modeling outputs superior to those of PERSIANN and CHIRPS ( ). In
Vietnam, PERSIANN-CDR did not perform well compared to other gauge-corrected datasets in runoff simulations at a daily time step
( ).

Nonetheless, in another study from Vietnam, PERSIANN-CDR performed slightly better than CPC in streamflow modeling
employing a hydrological model ( ). explored the role of PERSIANN-CDR, TMPA, and NCEP-CFSR in
forcing runoff simulations employing SWAT in China. They discovered that both PERSIANN-CDR and TMPA 3B42V7 are datasets
useful in runoff prediction at daily and monthly scales. Results of another study in China revealed that TMPA outperformed
PERSIANN-CDR in estimating the precipitation and runoff simulations with SWAT ( ). In a semi-arid catchment in Iran,
PERSIANN-CDR also showed low accuracy in runoff simulations at monthly time steps ( ).

Several of the aforementioned studies compared satellite-based datasets against gauge interpolated datasets and reanalysis.
Regarding the development methods of these different datasets, satellite-based datasets usually show the weakest performance in
precipitation comparisons and runoff simulations. PERSIANN-CDR and PERSIANN-CCS-CDR, however, are gauge-corrected datasets,
and they could show better accuracy than other PERSIANN family products. In the current study, PERSIANN-CDR performed better
than others in runoff simulations, although the performance level is still unacceptable.

As mentioned in the seasonal evaluation of PERSIANN products, these products have shown less accuracy over regions that have
high intensive precipitation during summer. During summey, this uncertainty in satellite-derived products (due to brightness tem-
peratures in individual spectral channels and obtained rain rates is less deterministic compared to, for instance, radar reflectivity and
rain intensity) leads to higher uncertainty of the precipitation estimates and, consequently, unrealistic results of hydrological simu-
lation in small catchments ( ).

3.4. Limitations and further study
This study evaluated PERSIANN family products in a catchment in Poland in daily time steps for all the period and seasonal as-
sessments. The datasets were extracted for centroids of each sub-basin. We therefore suggest that it could be valuable in further studies,

if researchers compare these datasets at the center of each product. In addition, a further study for a larger catchment (or at the country
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scale) is needed to capture more geographical complexity and girds in the study.

Moreover, the comparison is made against a regional gauge interpolated dataset (GD2DC-PL+). According to , this
type of comparison could increase the uncertainties of results. Further research should therefore evaluate these datasets against gauge
stations.

Daily comparisons in both accuracy evaluation and runoff simulations in daily steps showed no acceptable accuracy. It is rec-
ommended that in future studies researchers evaluate these datasets in monthly comparisons, because some of the hydrological models
can use both daily and monthly time series as the input. The results should be useful in water balance and long-term studies.

PERSIANN family products also have sub-daily datasets. The accuracy of these datasets is still unknown in this part of the world.
Analysing these datasets in flood modeling and sub-daily precipitation evaluation would greatly benefit extreme analysis and disaster
management assessments.

Finally, GD2DC-PL+ has one important limitation, it is available for a fixed period, with updates occurring every several years. In
contrast, PERSIANN family products are real-time or near-real-time datasets which makes them an attractive data source for some
specific hydrological applications. However, to keep integrity and reliability of results in global studies, we suggest applying a bias-
correction method ( ) for the PERSIANN family products in daily time steps
over Poland. This could be done by using G2DC-PL+ over the Odra River basin and Vistula River basin in central Europe, or at
watershed and catchment levels in Poland.

4. Conclusion

This study assesses the performance of PERSIANN family satellite-based precipitation datasets against a regional gridded dataset
over a catchment in Poland. It is the first time we used PERSIANN-CCS-CDR, PDIR-NOW in runoff simulations using a relatively new
model SWAT+.

This study is composed of two parts: 1) the evaluation of PERSIANN family satellite-based precipitation products to G2DC-PL+ in
the period 2003-2019, and 2) use of the hydrological SWAT+ model to simulate daily runoff. Our conclusions can be summarised as
follows:

a) PERSIANN family products could detect the precipitation events accurately according to POD, FAR, and CSI indicators.

b) PERSIANN-CDR and PDIR-NOW show better correlations compared to other products.

¢) The SWAT+ results demonstrate that G2DC-PL+ could be used as a reliable source instead of gauge data in runoff simulations.
d) PERSIANN-CDR performed slightly better in runoff simulations compared to other gridded datasets.

e) PERSIANN family products are unreliable in daily precipitation estimates and runoff simulations.
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ARTICLE INFO ABSTRACT

Accurate and comprehensive modelling aimed at investigating the impact of climate change on rainfed crop
yields is of great importance due to the interconnected issues of water scarcity and food security. Because the
process-based and statistical approaches to simulating crop yields are different in nature, a comparison between
them is needed. This study investigates the accuracy of crop yield simulations in the historical period as well as
future projections using two modelling approaches: 1) a process-based approach employing the Soil and Water
Assessment Tool+ (SWAT+) model, and 2) a statistical approach employing a data-driven model, Feed Forward
Back Propagation Neural Network (FFBPNN) over a medium-sized catchment in north-western Poland. The
application of two potential evapotranspiration methods (Penman-Monteith and Hargreaves) in SWAT+
permitted calibration (2004-2011) and validation (2012-2019) of runoff and yields of winter wheat and spring
barley. Different combinations of climatic parameters with a drought index based on Joint Deficit Index were
applied to simulate and project rainfed crop yields (winter wheat, barley, potato, rye, rapeseed, sugar beets,
cereals, maize for grain, maize for green forage, pulses) with FFBPNN. The results reveal that adding the new
drought index helped increase the FFBPNN performance. This approach showed that future yields of the studied
crops would slightly increase under RCP8.5 by 2060. Winter wheat and spring barley projections from SWAT+
showed very small changes using both the Penman-Monteith and Hargreaves method. Policy-wise, the results
should be of interest to climate change adaptation practitioners and food security experts. Future studies should
aim at more thorough investigation of the role of the downscaling technique and extreme events, as well as the
effect of elevated CO3 on future crop yields.

Keywords:

Global warming

Oder River basin

Baltic Sea basin

Machine learning
Artificial Neural Network

1. Introduction ( ). All of these factors are interlinked.
Evaluation of the future and prevention of acute situations requires

Due to an increase in anomalies in the atmosphere in recent years,
such as climate change, several aspects of human life have been under
threat. This has a significant effect on water, the most crucial material in
the environment that all living things depend on (

). Global warming has been identified as a vital issue in
the context of climate change during the current and future centuries
( ). Several
studies have shown that lack of water is critical for life security, food
security, and the economy ( ). For example,

revealed that an increase in maximum temperature in Mali
leads to a reduction in cotton yield, affecting the economy. In northern
Thailand, rainfed rice and corn production may be reduced under
climate change conditions, influencing food security and the economy

* Corresponding author.

E-mail address: (M. Piniewski).

availability of a simulation of the future for scientists and authorities
( ).

The accuracy of estimations plays a significant role here. Obtaining a
robust and reliable estimate of these conditions involved the develop-
ment of several methods in different fields of science. General Circula-
tion Models (GCMs) have been developed and used for climate change
projections over the last three decades (

). GCMs are numerical models capable of interpreting physical
interactions of the atmosphere and ocean to simulate global climate
response to rising greenhouse gas emissions. Different methods are
developed in the realm of hydrology using different concepts, such as the
process-based and statistical approaches ( ). Finally,
like in hydrology, as a representative of food production, crop yield
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modelling could be based on different approaches and concepts (

). Moreover, both hy-
drological and crop models are commonly forced by GCMs to project the
future state of water resources and crop yields, respectively (

). Some complex hydrological models also have their crop growth
modules and can serve both purposes.
Statistical approaches aim to find links between a set of meaningful
and effective variables and crop yield (

). These approaches are
based on data, and long-term datasets are needed for high estimation
accuracy ( ). The very nature of crop datasets is that
they contain only one value per year for a given crop and spatial unit
[¢ ). Different numerical methods have been applied
to address this observation of data scarcity, with a robust model and
projections. For example, Machine Learning (ML), a member of
data-driven and Artificial Intelligence (AI) methods focusing on
learning, is a useful method that can predict and simulate crop yields
based on several features (

). ML can discover patterns and similarities between inputs
and outputs. The models need to be trained using datasets. The results
are interpreted based on prior information and knowledge (

). Moreover, several
statistical/regression-based models, such as the Panel, ABSOLUT, and
IRMA, are employed to simulate crop yields (

).

Several studies have used Al methods to simulate crop yields in
different regions and climatic conditions. For example,
applied Neural Networks to predict wheat yield using nitrogen fertilizer,
red edge inflection point vegetation index, and soil electrical conduc-
tivity. Everingham et al. (2009) used Forward Stagewise Algorithm to
forecast regional sugarcane crop production. In another study, Clus-
tering methods, Random Forest, and Support Vector Machine were
employed to obtain a robust model for wheat yield prediction (

). In the studies, weather parameters were directly applied
as inputs in statistical models. However, a drought indicator based on
precipitation or soil moisture data could also have substantial effects on
the accuracy of statistical models (

).

Artificial Neural Networks (ANNs) have been employed more
frequently than other Al methods due to their higher flexibility in crop
yield simulations ( ). According to litera-
ture, different inputs such as satellite datasets, climatic variables, soil
properties, and geographic information are included in ANNs to simu-
late crop yields (

). ANNs are a technique that identifies the under-
lying relationship between data by processing them. Neural network
training aims to learn the process and provide an appropriate output for
each input. ANNs can detect complex nonlinear relationships between
input and output vectors (

).

In process-based approaches, crop simulation is based on physical or
empirical equations ( ). In
these models, inputs could be remarkably simple, or numerous datasets
could be included in the modelling process (

). An example of widely used process-based model
with high input data requirements is the Soil and Water Assessment Tool
(SWAT), recently extensively revised into the new version called
SWAT+ (

). SWAT has been used to model various agronomic
practices, assess the impact of climate change on hydrology and crop
yields, and project nutrient loads in basins (

). SWAT as an
agro/eco-hydrological model has been widely used for crop yield sim-
ulations in regions with different climatic conditions worldwide
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). In the aforementioned studies, however, only one of the potential
evapotranspiration (PET) methods in the SWAT model was employed
(SWAT covers three PET methods, including Hargreaves (temper-
ature-based method), Priestley-Taylor (radiation-based method), and
Penman-Monteith (temperature- and radiation-based method)). Actual
evapotranspiration in SWAT is controlled by the PET method, and each
of the aforementioned methods could provide different results under
climate change scenarios. The necessity of the comparisons between
these methods is well described in LA
comparison of the Penman-Monteith and Hargreaves methods under
humid conditions was presented in :

In this field of research, different models have been shown to provide
different results for the projections, which shows the high-level uncer-
tainty in crop models ( ). Major worldwide projects have
attempted to assess and adjust crop simulators, and measure, control, or
decrease uncertainties from the crop simulator method in projecting
climate effects on crop yield. For example, two large-scale projects
(AgMIP ( ) and MACSUR projects ( ))
focused on this objective ( ).

This study’s primary objective is to compare the statistical and
process-based modelling approaches in the simulation and projection of
crop yields in the Weina catchment located in the north-western part of
Poland. The study is based on the following three hypotheses: (a) a high
temperature increase projected under the RCP8.5 scenario would lead to
a decline in crop yields projected by both types of models in north-
western Poland; (b) crop yields projected by process-based models
would depend on the selected PET method; and (c) drought-based in-
dicators (i.e. SPI) have advantages over direct use of weather parameters
in statistical simulations of crop yields.

2. Methodology
2.1. Case study

A humid continental climate catchment in central Europe was
selected to simulate and project crop yields. The Welna catchment is a
flat catchment located in Poland and part of the Oder River basin
( ). The local
agricultural activities are based on rainfed crops. The catchment has
relatively homogeneous climatic conditions. More details on the catch-
ment, such as the applied data and weather conditions, are available in

presents the position of the Weina catchment,
land use, stream network, discharge stations, and sub-basin configura-
tion for process-based modelling. The dominant agricultural crops in the
study area include winter wheat (30% of the area ~ 135,500 ha) and
spring barley (14.8% of the area ~ 21,500 ha). The growing period of
the majority of spring crops starts in the second half of March or first half
of April. In this region of Poland, droughts are reported to happen most
frequently and lead to largest crop losses in Poland (

)

2.2. The Soil and Water Assessment Tool+ and crop simulation

The SWAT- agro-hydrological model (an extensively modified
version of the SWAT) is a relatively new model used in this study as the
process-based model (more details available in s

,and ). SWAT-+ simulates the plant
growth process by employing a basic version of the EPIC’s generic crop
growth method ( ). Crop maturity is based on
accumulating either “days to maturity” (a new option in SWAT+) or
“potential heat units.” Once the total heat units required to reach crop
maturity (or days to maturity) are exceeded, the crop growth ends. Daily
biomass production is affected by static absorbed photosynthetically
active radiation, radiation use efficiency of the crop, and LAI (Leaf Area
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Fig. 1. Position of Welna in Poland and the province, land use map, river network, discharge stations, and lakes.
Index) ( ). about the model setup and runoff results in

In SWAT+ , evaporation and evapotranspiration are assessed by a
preliminary computation of potential evaporation (PET), representing
the evaporative demand of the atmosphere. The Penman-Monteith and
Hargreaves methods were used to calculate PET for a better under-
standing of crop yields in the future, and to evaluate the influence of
these methods on crop yields in the Weina catchment (

). The Penman-Monteith method uses
net radiation, relative humidity, 2-m wind speed, and air temperature,
but the Hargreaves method only uses air temperature.

Considering 2001-2003 as the warm-up period, the SWAT+ model
was calibrated for the period 2004-2011, and validated for the years
2012-2019 for daily runoff and crop yields (winter wheat and spring
barley). The calibration and validation steps employed 20 parameters,
including soil parameters (k, bd, awc), hydrologic response unit pa-
rameters (cn2, ovn, lat ttime, canmx, esco, epco, perco, surlag),
groundwater parameters (alpha, bf max, deep_seep, flo min, revap_co,
revap_min, sp_yld), and channel parameters (chn, chk). The ranges and
optimal values of the calibrated parameters are available in the study by

, where the hydrological component of SWAT+ was
applied for the first time. To focus on crop yield simulations and reduce
the duplication with the preceding study, runoff modelling and its de-
tails are excluded from the Results section. Readers can find more details

Table 1
Sowing and harvest dates of crops implemented in SWAT+ .

An important feature of the SWAT+ setup from the point of view of
crop yield calibration is a crop-specific land cover map and timing of key
management operations for all crops. In this study we used the same
land use map that was prepared for the Poland-wide SWAT model
( ). presents sowing and harvest dates
for six crops included in the SWAT+ setup for the Welna catchment,
including two most dominant ones, namely winter wheat and spring
barley, used in further assessments.

2.3. Artificial Neural Network structure

Due to the widespread use of ANNs as a simulation tool for Earth’s
processes, the Feed Forward Back Propagation Neural Network
(FFBPNN) (complete theoretical background available in

), widely examined in Earth-process modelling and predicting, was
employed (

). FFBPNN consists
of one input, one or more hidden layers (where data are processed to
build a model), and the output layer (where outputs are generated).
Moreover, FFBPNN can be categorised in Multilayer Perceptron (MLP)
Neural Network Models.

Crop SWAT-+ code Sowing date Harvest date Area [ha}l Fraction [%]
Winter wheat* WWHT 13-Oct 3-Jul 80,000 30.68%
Spring barley* BARL 31-Mar 5-Aug 38,500 14.80%
Silage maize CSIL 1-May 12-Aug 11,500 4.43%
Potato POTA 16-Apr 10-Oct 3,500 1.35%
Maize CORN 30-Apr 30-Sep 4,800 1.83%
Sugar beet SGBT 7-Apr 9-Aug 3,600 1.38%

* These crops were used in further analyses with SWAT+-.
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Fig. 2. Structure of employed FFBPNN with inputs and output.

2.3.1. Feed forward back propagation neural network architecture

Some initial parameters should be fixed to start simulating with
FFBPNN models. The article provides brief information about these
initialisations. First, by means of a trial-and-error process (using all the
inputs and outputs), the Levenberg-Marquardt backpropagation (LMBP)
algorithm was found to be the best algorithm for FFBPNN training
(complete details of the LMBP algorithm are described by

). Moreover, LMBP has been wused in several

hydrological/Earth-process studies, and has been recognised as a reli-
able training algorithm with a more accurate curve fitting ability utilised
in input-output data (

). Additionally, the sig-
moid and linear activation functions, commonly utilised for
Earth-process modelling objectives, were employed in the hidden and
output layers (

). One hidden layer was chosen for

FFBPNN topology based on several studies, due to its sufficient ability to
simulate complex systems such as Earth or hydrological processes (

).

The ideal number of neurons (between 5 and 15) in the hidden layer was

determined by means of the trial-and-error method in accordance with

the MSE, and the value of 10 was selected. displays the FFBPNN

schematic in our study. In the current study, 70% of data were used for

Table 2
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train, 15% for validation, and 15% for test periods.
2.4. Meteorological drought index

This study employs the Joint Deficit Index (JDI) method for meteo-
rological drought calculation. JDI is developed based on the Stand-
ardised Precipitation Index (SPI) and its structure (

). In this study, we have applied Gamma
distribution to determine SPI, and because using the JDI method is
different from the standard SPI method, it is called “mod SPL.” A derived
monthly drought index (mod SPI) based on JDI can simultaneously
detect emerging and prolonged meteorological droughts (

). JDI represents the overall precipitation deficiency situation
regarding the joint accumulative probability. JDI therefore presents a
more sophisticated evaluation of the meteorological drought status.

Moreover, JDI can support monthly step meteorological drought
evaluation. The amount needed for rainfall to attain normal situations in
the following months can be concluded by JDI (

). The classification scale of mod SPI is the
same as SPI. The ranges and differences are described in

Because all crops in our case study are rainfed, employing a robust
method for determining the meteorological drought is necessary, and
could improve the trustworthiness and reliability of the results. More-
over, JDI is sensitive to previous months’ droughts which is a good
representer of drought (monthly and seasonal), and is effective in crop
yield modelling. Crops such as winter wheat, rye, and winter barley are
sensitive to precipitation during winter and spring. Other crops in our
case study, such as potato and maize, are sensitive to the amount of
precipitation during spring and summer ( ). Yearly
precipitation data are therefore inadequate and could increase statistical
models’ error and uncertainty for crop yield simuiations. Furthermore,
monthly precipitation indicates only the amount of precipitation in a
particular month. In other words, it is independent of the previous
month’s precipitation. We used 30 years (1990-2019) of precipitation
data to obtain a robust statistical index for drought to determine mod
SPL

2.5. Climate change scenarios
In this study, 19 GCMs under the Coupled Model Intercomparison

Project — Phase 5 (CMIP5) were downscaled ( Jto
the RCP8.5 scenario (the concentration of carbon dioxide that delivers

Details of climatic parameters in selected GCMs. * Moderate scenario for horizon 2021-2040 ** Moderate scenario for horizon 2041-2060. * Warm and dry scenario

for both horizons * Warm and wet scenario for both horizons.

2021-2040 2041-2060
GCM Model TMP (absolute change) PCP (relative change) TMP (absolute change) PCP (relative change)
GCM1 ACCESS1-3 1.20 0.11 2.92 0.03
GCM2 BCC-CSM1-1 0.90 0.01 2.20 0.01
GCM3 CanESM2 117 0.13 2.05 0.16
GCM4 CMCC-CM** 1.51 0.11 2,51 0.04
GCM5 CNRM-CM5 0.89 0.09 1.90 0.16
GCM6 CSIRO-MK36 1.13 0.04 219 0.06
GCM7 EC-EARTH 1.12 0.11 2.21 0.04
GCMS8 GFDL-CM3* 2.54 0.14 3.95 0.12
GCM9 GISS-E2-R-CC 1.46 0.04 2.21 0.05
GCM10 HadGEM2-ES* 2.19 0.00 3.23 -0.04
GCM11 INMCM4 1.10 0.08 1.20 -0.03
GCM12 IPSL-CM5A-MR 1.78 -0.02 2.80 -0.01
GCM13 MIROCS 1.98 -0.02 2.59 0.09
GCM14 MIROC-ESM 2.25 0.14 34 0.23
GCM15 MPI-ESM-MR 0.71 0.00 1.38 0.06
GCM16 MRI-CGCM3 0.84 0.07 1.58 0.06
GCM17 NCAR-CCSM4 1.07 -0.01 1.99 0.02
GCM18 NCAR-CESM1-CAM5* 1.46 0.05 2.77 0.09
GCM19 NorESM1-M 1.25 0.02 1.76 0.03
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global warming at an average of 8.5 watts/m? by 2100) which is the
worst projection according to , and two different time
horizons {2021-2040 and 2041-2060) in the Welna catchment.

This study employed LARS-WG 6.0 built-in GCMs ( ). LARS-
WG 6.0, containing 19 GCMs based on the IPCC Fifth Assessment Report,
is a stochastic weather generator and downscaling tool for generating
regional-scale climate scenarios (https://sites.google.com/view/lars-
wg/). Precipitation, maximum and minimum temperature, and solar
radiation are four weather parameters extracted from built-in GCMs in
LARS-WG 6.0 ( , https://www.ipcc.ch/).

The downscaling process (as well as input for statistical modelling)
employed the LARS-WG 6.0 statistical downscaling model (

). The performance of LARS-WG 6.0 in generating historical
time series was statistically acceptable (according to p-value > 0.05) for
all the weather parameters. The authors wrote a script in Python to
apply the climate change effect on the SWAT+ model inputs. The script
reads SWAT+ input (*. PCP, *, TMP, *. SLR) and, by using the delta
change method, applies the climatic changes to the input (https://gi-
thub.com/MR-Eini/SWAT-plus-climate-change-code).

shows all the considered climatic models and three climatic
scenarios selected for further consideration based on average relative
changes in precipitation (PCP) and average absolute temperature
change (TMP). The first climatic scenario is the moderate scenario, the
second one is the “warm and dry” scenario, and the third one is the
“warm and wet” scenario. The precipitation and temperature changes of
the middle GCM for each time horizon (average changes in precipitation
and temperature relative to other GCMs) are selected as the moderate
scenario. Considering the maximum increment in temperature and the
maximum decrement in precipitation (simultaneously), the GCM of the
warm and dry scenario was selected. Finally, a GCM for the warm and
wet scenario was chosen based on the maximum temperature increment
and precipitation increment.

presents the condition of these scenarios compared to other
scenarios. For the time horizon 2021-2040, NCAR-CESM1-CAMS5
(moderate scenario), HadGEM2-ES (warm and dry scenario), and
GFDL-CM3 (warm and wet scenario) were selected for climatic pro-
jections. Accordingly, for the time horizon 2041-2060, CMCC-CM
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0.15
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(moderate scenario), HadGEM2-ES (warm and dry scenario), and
GFDL-CM3 (warm and wet scenario) were selected for climatic
projections.

2.6. Data selection and statistical indices

This study employed Principal Component Analysis (PCA). A 2D
diagram analysis approach of PCA was employed to (1) discover the
relationship between weather inputs to ascertain how they correlated to
or diverged from each other before starting using FFBPNN; (2) identify
the similarity between crops - this step also helped select crops with
higher divergencies from each other. These steps lead to a more robust
and reliable statistical model, and avoid overtraining/fitting the model
by decreasing the number of vectors on both sides of the model. The
input and output vectors were normalised (between 0 and 1) before
applying them to PCA so that all vectors have the same weight.

For evaluation and testing the accuracy of modelled datasets, NSE
(Nash-Sutcliffe Efficiency), PBIAS (Percent bias), MSE (Mean Square
Error), CC (coefficient of correlation), MAE (Mean Absolute Error),
RMSE (Root Mean Square Error), and R-square (Coefficient of Deter-
mination) were applied. The indices are described in HydroGOF (R
package). Moreover, some examples of applications, acceptable ranges,
and optimum values can be found in several studies such as
, and

> s 3

2.7. Software, packages, and environments

The employed approaches are presented in in addition to the
flow chart with consecutive study steps. Moreover, the sources of the
employed data, software, packages, and environments are included in

. The crop yield data used for the calibration of the statistical
model were extracted from the datasets mentioned in at the
Wielkopolska province level. The wet weight yield data were corrected
to the dry matter yield before calibration in SWAT+ .

2041 - 2060 e
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Fig. 3. Position of GCMs compared to each other for two time horizons (red circles point to the selected models).
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Process-based approach

¥ =
1- Digital layers {DEM, soil classes, landuse)
2- Weather data (precipitation, max and min temperature,
solar radiation, relative humidity, wind speed)
3- Management data (Fertilizer, Planting and harvesting
date)

. A
SWAT+ model
i (Penman-Monteith and Hargreaves PET me_thc@

Calibration and Validation for runoff and crop yield
]

Best parameter sets
{Penman-Monteith and Hargreaves PET methods)

1

Crop yield projection

Climate change |

v
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Statistical approach

b 4

Model structure
19 GCMs 1- Selecting inputs (mod SPI (DI based} and weather data) by PCA
(PCP, TMP, SOLAR) 2- Selecting the topology of ANN-based model (FFBPNN)
= _ : _ =
T
RCP 8.5 Train, validation, | Satisfactory? "
2021-2040 and test ves
2041-2060
a) Wet condition
b) Moderate condition
| ¢} Warm and dry condition | v

4 Best model

l

Crop yield projection (winter wheat, spring barley, cereals, rye
rapeseed, potato, sugar beets, maize for green forage, maize for
grain, pulses

(winter wheat, spring barley)

Fig. 4. Flowchart and steps of each approach and climate change investigation.

Table 3
List of employed software, packages, and environments that were used in this study.
Tool or data Description Source
QGIS (3.16.4) Developing SWAT+ model, Visualization https://www.qgis.org/en/site/

QSWAT-+

SWATPlusEditor

HydroGOF

factoextra

ggplot2

SWAT+ Climate Change Code
LarsWG6

Developing SWAT-+ model

Developing SWAT-+ model

Evaluation of statistics

Extract and visualize the results of multivariate data analyses
Visualization

Climate Change for SWAT+

LARS-WG weather generator

https://swat.tamu.edu/software/plus/
https://swat.tamu.edu/software/plus/

https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf

https://cran.r-project.org/web/packages/factoextra/factoextra.pdf

https://ggplot2.tidyverse.org/
https://github.com/MR-Eini/SWAT-plus-climate-change-code
https://sites.google.com/view/lars-wg/

neuralnet Training of Neural Networks https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
G2DC-PL+ Climatic variables (PCP, TMP max, TMP min) https://doi.org/10.4121/uuid:a3bed3b8-e22a-4b68—8d75-7b87109c9feb
Solar radiation Institute of Meteorology and Water Management (IMGW-PIB) https://danepubliczne.imgw.pl/
Crop yield records Central Statistical Office of Poland (GUS) https://stat.gov.pl/en/topics/agriculture-forestry/

3. Results crop yields. As presented in , a clear correlation between pre-

3.1. Data pre-processing

Time series datasets were normalised between 0 and 1, and PCA was
used to identify differences and similarities between input and output
data individually. The correlation coefficient matrices are shown in

cipitation (mm) and mod SPI is observed. Maximum and minimum
temperature (°C) and solar radiation (MJ/m?) had no strong correlation
to each other, and had a negative correlation with precipitation and mod
SPI. Hence, precipitation, maximum and minimum temperature, and
solar radiation were included as the major variables for inputs. Using
mod SPI vectors created a different structure for the FFBPNN model.

for inputs (climatic parameters and mod SPI) and for According to , 10 different crops were selected as output in
Table 4
Correlation matrix between inputs.

PCP  Max. Temp Min. Temp Solar SPI1  SPI2 SPI3 SPI4 SPIS SPI6 SPI7 SPI8  SPIS  SPI10  SPI11  SPI2
PCP 1 0.56 0.14 068 094 095 09 097 095 091 087 085 080 076 0.71 0.67
Max. Temp  -0.56 1 0.85 020  -052 045 -045 047 046 -0.44 -042 040 -038 -034 031  -0.28
Min, Temp  -0.14  0.85 1 022 009 003 -001 003 -005 -005 -005 -005 -005 -003 003 -002
Solar 0.68  0.20 -0.22 1 066 -071 -069 -0.66 059 051 046 042 037 -032 027 -0.22
SPI1 094  -0.52 -0.09 066 1 098 096 095 091 087 083 080 076 071 0.66 0.60
SPI2 095  -0.45 -0.03 071 098 1 099 096 092 087 083 08 075 071 0.65 0.60
SPI3 096  -0.45 -0.01 069 096 099 1 099 096 092 08 08 082 077 0.72 0.67
SPI4 097  -047 -0.03 066 095 09 099 1 099 096 093 091 087 083 0.79 0.75
SPI5 095  -0.46 -0.05 059 091 092 096 099 1 099 097 095 093 090 0.86 0.82
SPI6 091 044 -0.05 -0.51 087 087 092 09 099 1 099 098 097 094 0.92 0.88
SPI7 087  -0.42 -0.05 046 083 083 0588 093 097 099 1 099 098 097 0.95 0.92
SPI8 0.85  -0.40 -0.05 042 080 080 08 091 095 098 099 1 099 098 0.97 0.94
SPI9 080  -0.38 -0.05 037 076 075 082 087 093 097 0698 099 1 0.99 0.99 0.97
SPI10 076  -0.34 -0.03 032 071 071 077 083 090 094 097 098 099 1 0.99 0.99
SPI11 071 -0.31 -0.03 027 066 065 072 079 08 092 095 097 099 099 1 0.99
SPI12 067  -0.28 -0.02 022 060 060 067 075 082 088 092 094 097 099 0.99 1
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Table 5

Correlation matrix between crop yields.

Sunflower

oil

Pulses

Maize for
green

Maize for

Triticale  Mixed Sugar  Rapeseed
beets grain

Qats

Basic Rye

Cereals  Basic and
mixed

Potato

Barley

Winter
wheat

Crop

seed

cereals

cereals

forage

cereals

0.16
0.04
0.25
0.10
0.10

0.39
0.39

0.27
0.47
0.03
0.23
0.33

0.54
0.58
0.77
0.68
0.60

0.46
0.51
0.77
0.62
0.52

0.71
0.62
0.15
0.56

0.64

0.60
0.52
0.88
0.76
0.64

0.78
0.94
0.57
0.85
0.88

0.96
0.97
0.58
0.93
0.98

0.80
0.96
0.58
0.86
0.89

0.93
0.95
0.65
0.95
0.97

0.98
0.96
0.64
0.97

1.00

0.97
0.97
0.65
0.97

0.93
0.93
0.77

0.58
0.58

0.92

A Winter wheat
Barley

B
C

0.92
0.58
0.93
0.97

-0.17
0.23
0.36

0.58
0.93
0.97

Potato

0.77
0.65

Cereals

0.97

Basic and mixed

cereals

E

0.11
0.08
0.07

0.35

0.29
0.35
0.61

0.57

0.50
0.48
0.56

0.97 0.83 0.65 0.67
0.60
0.42

0.86
0.88

0.97

0.64 0.97 0.99
0.95
0.86

0.65
0.58

0.96
0.95
0.96

0.98

Basic cereals

F

0.30
0.40
0.46
0.37

0.56
0.62
0.53
0.65
0.68
0.04
0.97

0.58
0.45
0.69
0.42
0.30

0.84
0.98
0.87

0.95
0.90

0.88
0.95
0.84
0.60
0.58
0.48
0.56

0.97
0.86

0.97
0.89
0.98
0.88
0.64
0.64
0.52
0.60

0.93
0.80
0.96
0.78
0.60
0.71
0.46

0.

Rye
Oats

0.10
0.01
0.17

0.42
0.56

0.48
0.60
0.67
-0.01

1

0.56
0.43

0.90
0.98
0.42
0.45
0.56
0.62

0.97
0.83
0.65
0.67
0.50
0.57

0.93
0.85
0.76
0.56
0.62
0.68

0.58
0.57
0.88
0.15
0.77
0.77

0.97
0.94
0.52
0.62
0.51
0.58

Triticale

0.87
0.56
0.69
0.48
0.53

Mixed cereals

-0.16
0.63

-0.22
0.24
0.22
0.22

0.43
0.42
0.60
0.65

Sugar beets

Rapeseed
M Maize for grain

K
L

-0.07
0.18

0.30
0.67
0.68

-0.09
-0.08

-0.01

0.04

0.12

0.97

Maize form green
forage

Pulses

N

0.18
0.03

0.54

0.22
-0.08
0.12

0.22

0.24

-0.22
-0.16
0.17

0.56
0.37
0.01

0.42
0.46
0.10

0.61
0.40
0.07

0.35
0.30
0.08

0.29
0.35
0.11

0.33
0.36
0.10

0.23
0.23

0.03
0.10

0.47
0.39
0.04

0.27
0.39
0.16

0.54
0.18

-0.09
0.

63
-0.07

0.

-0.17
0.25

Oil seed

P

0.03

18

Sunflower

Q
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FFBPNN. We have excluded basic and mixed cereals, basic cereals, oats,
triticale, mixed cereals, oil seed, and sunflower due to high correlation
with other crops and incomplete time series in some of the crops (i.e.
sunflower). Winter wheat, barley, potato, rye, sugar beet, rapeseed,
maize for grain, maize for green forage, and pulses show the most
negligible correlation. These can be counted as the major crops relative
to other crops in the study area ( ). The red and pink points in
depict the number of years (i.e. 1999 is 1, 2000 is 2, and so on).

also shows that crops are clustered into three major groups in the PCA
plot: (1) cereals (2) root crops and maize; (3) rapeseed, oil seed and
pulses. Sunflower is an outlier, possibly due to missing data. According
to , almost all the crops have the least correlation with sunflower,
pulses, and oil seed.

3.2. Process-based approach

Based on the SWAT-+ model, next to runoff (details described in
), crop yields of winter wheat and spring barley were cali-
brated by means of two different PET methods.
The outputs of the model and observed values are presented in
. The violin plot in depicts the variation of SWAT+ results,
which is much higher than in the observed dataset. According to )
Penman-Monteith method shows higher crop yields (i.e., winter wheat
and spring barley) in the wet years (with very wet 2010 being an
exception), while, for lower crop yields, both PET methods have rather
close crop yields. Moreover, in dry 2006 characterized by low crop
yields, both PET methods simulated considerably lower values than the
observed ones. In addition, in 2015, a year with severe drought in
Central Europe ( ) observed crop
yields did not experience a considerable decrement, but both PET
methods had lower crop yields than the observed data. The reason may
be that drought conditions developed in August, thus affecting mainly
late harvest crops, whereas winter wheat and spring barley are har-
vested early and suffer mostly from spring droughts (
).

3.3. Statistical approach

The study involved testing of 14 different combinations of inputs in
FFBPNN. presents the combination of inputs and the result of
training, validation, and test steps for all combinations. In this approach,
all types of crops were added into the one FFBPNN model. According to
R? and RMSE in , increasing the number of inputs improves the
performance FFBPNN. According to the results, “Scenario M” had
comparatively superior performance to other scenarios, and was
selected as the best scenario. Moreover, it can be seen that the drought
indicator has significantly improved the result of the statistical approach
in crop yield simulation.

We first compared all the generated crop yields in standardised
values with the observed values for the final evaluation. shows the
beeswarm plot and notched box plot of standardised values. According
to the beeswarm plot, the FFBPNN model did not accurately simulate the
maximum and minimum values, but the density of points between — 0.5
and 0.5 are close. The notched box plot shows no considerable differ-
ences for the medians. Similarly, the median and average of the FFBPNN
model have the same values, and the range between the first and third
quartile of the box for FFBPNN is wider than the observed data.

The analysis of individual crops is presented in a half violin plot in

. The half violin plot is useful for the assessment of the distribution
of each dataset. For example for spring barley, both datasets (FFBPNN
and observed) have a similar distribution, but the generated datasets for
pulses or maize for green forage show different distribution (multimodal
or more than one peak) than the observed data. generally shows
that the variation of the generated dataset and observed dataset are in
the same range, and there are no significant differences between the
observed and generated values for each crop.
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Fig. 5. PCA analysis results for inputs and outputs (see crop name codes A-Q in ).
3.4.1. Effect of climate change on crop yields based on the process-based
Table 6 approach

Crop yield modelled by SWAT+ with two different PET methods.

The effect of climate change on crops is evaluated by implementing
the climatic scenarios (changes in precipitation and temperature) on the
shows no significant decrease or increase in
winter wheat and barley crop yields. On average, Penman-Monteith
shows a slight decrease in crop yields in warm and dry situations. Re-
sults based on the Hargreaves method show lower variations than the
Penman-Monteith method. It could be concluded that under the selected
scenarios and two time horizons, crop yields are expected to not expe-

3.4.2. Effect of climate change on crop yield based on the statistical

According to the result for three scenarios in two different time ho-
rizons using FFBPNN, (a) the highest increases were observed in maize
for green forage (9.5%) and cereals (8.1%); (b) this approach generally
shows more increment in crop yield for the warm and dry scenario; (c)
on average, an approximately 0.8 ton/ha increase in crop yield is ex-
pected; (d) pulses yield is estimated to decrease by approximately 2.5%
presents the average changes in crop yield and

Results show that the FFBPNN method has estimated an increment in

Year Winter Wheat Spring Barley
Hargreaves Penman- Observed Hargreaves Penman- Observed calibrated model.
Monteith Monteith
1999 3.41 3.6 4.02 2.89 3.12 3.53
2000 4.76 5.11 3.46 4.37 4.9 2.81
2001 54 6.94 4.19 4,95 6.41 3.73
2002 2.46 3.13 4.18 2.42 2.62 3.55
2003 3.61 4.76 3.27 3.35 4.5 2,59 rience a notable change.
2004 3.6 3.06 4.85 2.49 2.99 4.06
2005 3.69 4.11 4.38 3.29 3.89 3.57
2006 1.96 1.95 3.46 1.54 1.87 2.87
2007 5.96 6.92 4.34 4.96 6.49 3.61 approach
2008 3.27 2.92 3.9 2.02 2.62 2.76
2009 5.94 7.89 4.7 5.46 7.48 3.98
2010 3.53 2.92 4.58 2.49 2.52 3.72
2011 4.77 5.38 4.11 4.14 4.77 3.26
2012 5.93 6.86 4.07 5.92 6.53 3.86
2013 4.87 6.67 4.89 4.61 4.32 3.92
2014 3.56 3.11 5.21 2.26 2.6 4.36
2015 3.59 3.9 4.75 3.21 3.53 3.73 . R
2016 5.3 5.27 4.63 432 479 3.8 in all scenarios.
2017 636 6.74 5.05 5.59 6.33 421 percentage of change.
2018 221 2.29 3.86 1.95 1.98 2.84
2019 22 2.23 4.13 1.96 2 3.28

For a more detailed investigation, standard statistical indices are
presented in . According to , FFBPNN has simulated crop
yields with high accuracy for whole period. The average CC is 0.90, and
MSE for sugar beets and maize for green forage is higher than the other
crops due to crop yield differences. All NSE values are above 0.70, and
the average of this index is 0.78, which is an acceptable result. Finally,
MAE shows less than 1 ton/ha mean absolute error on average.

3.4. Effect of climate change on crop yield
This section assesses the effect of climate change on crop yields. First,

we evaluated SWAT+ results using two PET methods and the statistical
approach.

crop yields for all crops, excluding pulses. Only for the near period
(2021-2040) under the moderate scenario, the process-based model
using the Penman-Monteith method showed an increase in winter wheat
yields (0.66%). In other scenarios, the yield of this crop is expected to
decrease. The Hargreaves method, however, shows a positive trend for
winter wheat yield under all the scenarios and periods, which is similar
to FFBPNN results.

Under the warm and dry scenario (for both time horizons and PET
methods), barley yields are expected to decrease (from ~ —0.77% to
—4.88%). In other scenarios, a rise in barley yields is projected
(0.73-5.64%). FFBPNN projects similar behaviour (increment).

4, Discussion

According to studies discussed in the introduction section, different
behaviour in crop yield projections is expected using different modelling
approaches under climate change conditions. In this regard, we simu-
lated crop yields with the application of the machine learning method
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Table 7
Model inputs and results of each scenario in training, validation, and test steps.
Inputs Scenario RMSE R-square
Train Validation Test Train Validation Test All
PCP, TMP max, TMP min, Solar A 0.25 0.27 0.49 0.81 0.58 0.34 0.72
PCP, TMP max, TMP min, Solar, mod SPI1 B 0.28 0.24 0.54 0.85 0.74 0.49 0.81
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI12 C 0.29 0.45 0.50 0.64 0.71 0.21 0.72
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI3 D 0.38 0.38 0.26 0.62 0.49 0.67 0.61
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SP14 E 0.31 0.29 0.40 0.72 0.83 0.72 0.72
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI5 F 0.36 0.37 0.37 0.64 0.69 0.55 0.61
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI6 G 0.36 0.30 0.55 0.55 0.69 0.34 0.53
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI7 H 0.38 0.08 0.11 0.52 0.90 0.83 0.67
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI8 1 0.23 0.35 0.23 0.79 0.90 0.79 0.77
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI9 J 0.37 0.22 0.16 0.59 0.92 0.90 0.67
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI10 K 0.38 0.28 0.14 0.56 0.64 0.92 0.66
PCP, TMP max, TMP min, Solar, mod SPI1 to mod SPI11 L 0.32 0.58 0.37 0.72 0.66 0.71 0.77
PCP, TMP max, TMP min, Solar, mod SPI? to mod SPI12 M 0.35 0.03 0.07 0.76 0.98 0.98 0.81
PCP, TMP max, TMP min, Solar, mod SPI3, mod SPI6, mod SPI9, mod SP112 N 0.37 0.09 0.10 0.58 0.94 0.98 0.76
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Table 8
Accuracy of the selected FFBPNN-based model (Scenario M) for each crop.
Crop NSE PBIAS (%) MSE (ton/ha) cC MAE (ton/ha)
Winter wheat 0.75 0.70 0.06 0.88 0.14
Spring barley 0.82 -1.00 0.05 0.91 0.15
Cereals 0.81 1.10 299 0.91 1.14
Rye 0.78 -0.40 0.06 0.89 0.17
Rapeseed 0.85 -0.10 0.02 0.93 0.09
Potato 0.81 -0.10 0.04 0.91 0.17
Sugar beets 0.78 0.50 23.34 0.90 3.66
Maize for green forage 0.74 1.90 10.26 0.88 2.03
Maize for grain 0.70 -2.60 0.29 0.90 0.39
Pulses 0.81 0.30 0.02 0.90 0.10
Table 9
Projection of crop yields based on SWAT+ model.
Yield (ton/ha)
Crops PET method Historical 2021-2040 2041-2060
Moderate Warm and dry Warm and wet Moderate Warm and dry Warm and wet
Winter Wheat Penman-Monteith 4.56 4.59 4.39 4.47 4.54 4.31 4.44
Hargreaves 4.11 4.19 4.17 4.21 4.14 4.12 4.17
Spring Barley Penman-Monteith 4.1 4.13 3.91 4.17 4.15 3.9 4.14
Hargreaves 3.9 4.1 3.87 4,11 4.12 3.78 412
Percentage of change
Crops PET method 2021-2040 2041~-2060
Moderate Warm and dry Warm and wet Moderate Warm and dry Warm and wet
Winter Wheat Penman-Monteith 0.66 -3.73 -1.97 -0.44 -5.48 -2.63
Hargreaves 1.95 1.46 243 0.73 0.24 1.46
Spring Barley Penman-Monteith 0.73 -4.63 1.71 1.22 -4.88 0.98
Hargreaves 5.13 -0.77 5.38 5.64 -3.08 5.64
Table 10
Projection of crop yields based on FFBPNN.
Yield (ton/ha)
Crops Historical 20212040 2041-2060
Moderate Warm and dry Warm and wet Moderate Warm and dry Warm and wet
Winter Wheat 4.29 4.46 4.46 4.43 4.43 4.49 4.48
Barley 3.53 3.62 3.63 3.60 3.61 3.64 3.63
Potato 22,12 23.40 24.23 23.64 23.59 24.80 23.85
Rye 3.65 3.85 3.86 3.82 3.82 3.91 3.89
Rapeseed 2.70 2.77 2.78 2.75 2.76 2.80 2.77
Sugar beets 51.97 53.62 54.50 52.95 53.77 56.35 54.33
Cereals 2.70 2.82 2.81 2.79 2.81 2.82 2,82
Maize for grain 6.10 6.68 6.68 6.65 6.64 6.67 6.74
Maize for green forage 42.69 44.81 44.95 44.81 44.58 44.79 45,11
Pulses 2,13 2.07 2.08 2.06 2.08 2.09 2.06
Percentage of change
Crops 2021-2040 2041-2060
Moderate Warm and dry Warm and wet Moderate Warm and dry Warm and wet
Winter Wheat 3.94 4.01 3.39 3.37 4.63 4.52
Barley 2.78 2.85 2.21 2.33 3.20 3.05
Potato 5.76 9.52 6.83 6.62 12.08 7.81
Rye 5.45 5.71 4.73 4.74 6.96 6.55
Rapeseed 2.55 2.80 1.87 2.27 3.60 2.62
Sugar beets 3.18 4.87 1.89 3.47 8.44 4.54
Cereals 4.29 3.80 3.15 3.79 4.27 4.28
Maize for grain 9.55 9.57 9.17 8.99 9.42 10.61
Maize for green forage 4.96 5.29 4.97 4.43 4.92 5.66
Pulses -2.60 -2.11 -3.02 -2.28 -1.77 -2.84

(FFBPN) and a process-based model (SWAT+). The machine learning
method employed not only weather parameters, but also a modified SPI
index. In several studies, however, soil information was critical in crop
yield modelling based on a statistical approach, followed by nutrients
and field management (

). These parameters,
however, are still rare and largely inaccessible in many regions.
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4.1. Improvements in statistical approach by drought indicators

Using climatic parameters such as precipitation, maximum and
minimum temperature, and solar radiation, directly in statistical models
is a common way of simulating crop yields ( ). In addition
to these parameters, we employed SPI as a drought indicator. Our results
show that employing a metrological drought index as an input can
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increase the reliability of the statistical approach in crop yield model-
ling. Some studies in Germany and India revealed that soil moisture
anomalies are a good predictor of silage maize yields, which supports
our results ( ).

4.2. Accuracy of SWAT+ model and FFBPNN

We employed two different PET methods within the SWAT-- model
for the process-based approach. This model proved to be a valuable tool
for crop yield simulation and projections in several studies (

). Our result proved that SWAT+ and FFBPNN can simulate
crop yield reasonably well, which is consistent with other studies (

). It
should be mentioned that SWAT+ simulates higher variability of crop
yield compared to the observed data. This could be explained by the fact
that the observed data is an average of farm-level data across an area
(Wielkopolska province) larger than the catchment, making the spatially
averaged yield statistics less variable. SWAT+ has a reasonable crop
yield estimation in years with normal precipitation, but there are some
opposite trends and correlations between observed data and models in
some years.

4.3. Effect of climate change on crop yields

The effect of climate change on crop yields showed no substantial
changes in winter wheat and spring barley yields based on SWAT+ .
Other research, however, revealed that the average total wheat yields
could increase during the future period ( ). Ac-
cording to the results of three climatic projections, FFBPNN shows an
increment in crop yields for warm and dry scenarios (approximately 0.8
tons/ha). Different studies show that using different models and climatic
scenarios can lead to different results of crop yield projections, partic-
ularly based on machine learning methods, for both an increase and
decrease under similar conditions (

). Studies on yield projections
in Poland have been scarce to date, while there is a strong evidence on
the effect of drought on decreasing yields in historical records (

). This study is one of the first that
provides quantitative estimates of future yields.

4.4. Limitations and outlook

The aforementioned differences between these two approaches may
result from the fact that FFBPNN is based on observed data and uses a
statistical method to project crop yield. In contrast, SWAT+, as a
process-based model, uses empirical equations to project crop yield.
Unseen situations for precipitation (mm), maximum and minimum
temperature (°C), and solar radiation (MJ/m?) under climate change
scenarios could be a source of uncertainty in FFBPNN results, and make
the results inaccurate.

One of the hypotheses in this study was the negative effect of climate
change on crop yields under RCP8.5. Our results reveal that in this re-
gion, the hypothesis could be rejected. It should be mentioned, however,
that both approaches could have uncertainties due to unseen climatic
situations in the calibration period, but this effect could be more critical
in statistical modelling due to the fact that SWAT+ has been already
implemented in areas with temperature higher than that in the current
study area. The PET method also does not considerably affect crop yield
projections in the study area in the process-based approach. However,
we would like to recommend examining the process-based approach in
more arid climatic zones where irrigation is applied. The last hypothesis
was that adding a drought indicator could increase the accuracy of the
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statistical model. The results of the employed statistical model show that
adding SPI as an additional input parameter increases the models’ ac-
curacy, and could lead to more reliable projection results.

5. Conclusion

The study employed two different approaches to simulate and proj-
ect rainfed crop yields in the Welna catchment in Poland over the his-
torical period 2001-2019 and two future periods (2021-2040 and
2041-2060). We found that adding a meteorological drought index as an
additional input parameter improved the accuracy of our statistical
approach. We also found that winter wheat and spring barley yields are
projected to change very little under future climate based on SWAT+ .
According to the results from FFBPNN, yields of various studied crops
were projected to increase in most cases, and the highest increase was
recorded for potato and grain maize.

In a wider context, there is a concern that Central Europe currently
faces increased frequency and severity of droughts (

) strongly contributing to crop losses (

). While future warming is certain, with its
magnitude largely dependent on the emission scenario, future precipi-
tation change in Central Europe is much less certain. Our results from
two independent approaches show no major crop losses in
north-western Poland, even under the “warm and dry” scenario.
Although it is not in contrast with the existing research at the European
level (see e.g. meta-analysis of ), this poses an inter-
pretational challenge that future studies should address. Two issues are
of particular interest: (1) the role of downscaling techniques; (2) the role
of CO; effect. In the case of the former, the question is if future crop yield
projections from process-based models driven by more sophisticated
downscaling techniques (e.g. bias-corrected RCMs) show a different
pattern than those obtained using a simple delta change method failing
to take into account changes in climate variability and extreme events
( ). In the case of the latter, the globally projected
increase in atmospheric CO; concentration adds another layer of
complexity to the already complex problem, with impacts on transpi-
ration, photosynthesis, and water use efficiency.
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ABSTRACT

Satellite-based observations of soil moisture, leaf area index, precipitation, and evapotranspiration facilitate agro-
hydrological modeling thanks to the spatially distributed information. In this study, the Climate Change Initiative
Soil Moisture dataset (CCI SM, a product of the European Space Agency (ESA)) adjusted based on Soil Water Index
(SWI) was used as an additional (in relation to discharge) observed dataset in agro-hydrological modeling over a
large-scale transboundary river basin (Odra River Basin) in the Baltic Sea region. This basin is located in Central
Europe within Poland, Czech Republic, and Germany and drains into the Baltic Sea. The Soil and Water Assessment
Tool+ (SWAT + ) model was selected for agro-hydrological modeling, and measured data from 26 river discharge sta-
tions and soil moisture from CCI SM (for topsoil and entire soil profile) over 1476 sub-basins were used in model cal-
ibration for the period 1997-2019. Kling-Gupta efficiency (KGE) and SPAtial EFficiency (SPAEF) indices were chosen
as objective functions for runoff and soil moisture calibration, respectively. Two calibration strategies were compared:
one involving only river discharge data (single-objective - SO), and the second one involving river discharge and
satellite-based soil moisture (multi-objective — MO). In the SO approach, the average KGE for discharge was above
0.60, whereas in the MO approach, it increased to 0.67. The SPAEF values showed that SWAT + has acceptable accu-
racy in soil moisture simulations. Moreover, crop yield assessments showed that MO calibration also increases the crop
yield simulation accuracy. The results show that in this transboundary river basin, adding satellite-based soil moisture
into the calibration process could improve the accuracy and consistency of agro-hydrological modeling.
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1. Introduction

Several complex processes, such as interactions between groundwater
and surface water, river flows, crop-related processes, nutrient transport,
and anthropogenic effects occur simultaneously in river basins
(Fernandez-Palomino et al., 2021; Koohi et al., 2022; Ma et al., 2019).
Though understanding these processes on small scales, such as laboratory
or controlled farms, seems straightforward, but in the real world, with nu-
merous unpredictable effects on these processes, analyzing and finding pre-
cise relations between them is almost unattainable (Fernandez-Palomino
et al., 2021; Guse et al., 2016; McDonnell et al., 2007; Sivapalan et al.,
2012; Triana et al., 2019). Due to the high variability in the real world, sim-
ilar farms in the same region by employing the same farm management
plan could have different crop yields, or similar water-saving plans in differ-
ent regions could have totally different outputs (Feng et al., 2006; Fohrer
et al., 2001; Gupta et al., 2006; Montanari and Koutsoyiannis, 2012).

In this regard, several types of hydrological models as managerial tools
are developed to simulate and project the consequence of different possible
scenarios (Devia et al., 2015; Sood and Smakhtin, 2015). In the realm of hy-
drology, distributed hydrological models are widely used to comprehen-
sively simulate the effects of human-caused activities such as land use
changes, and natural-caused effects such as heatwaves and extreme precip-
‘itation events on water quantity, quality and crops (Alfieri et al., 2022;
Delavar et al., 2022; Eini et al., 2020; Eini et al., 2022a; llampooranan
et al., 2021; Ma et al., 2019). In several studies, distributed hydrological
models have been calibrated only by considering runoff. However, other el-
ements of the hydrological process, such as the share of evapotranspiration
in water balance or infiltration rate, can be misrepresented by models; for
example, assessing the effect of climate change on the water balance in an
intensively irrigated area is not solid when a hydrological model is cali-
brated only by focusing on runoff (Gupta et al., 2006; Montanari and
Koutsoyiannis, 2012; Pokhrel et al., 2012). It is reported that selecting dif-
ferent parameter sets can lead to similarly good results for simulated dis-
charge, which is referred to as equifinality (Abbaspour, 2022; Beven,
2006). One of the possible ways to avoid equifinality is multi-objective cal-
ibration, i.e. employing in calibration additional temporal and spatial vari-
ables, such as crop yields, soil moisture, base flow, potential and actual
evapotranspiration, leaf area index (LAI), infiltration, biomass index, and
tile flow can be included in calibration processes (Alfieri et al., 2022;
Azimi et al., 2020; Brocca et al., 2017; Brocca et al., 2020; Ciabatta et al.,
2016; De Santis et al., 2021; Fernandez-Palomino et al., 2021; Pfannerstill
et al., 2017; Pokhrel et al., 2012). For example, llampooranan et al.
(2021) have used crops as a sensor to increase the reliability of the hydro-
logical model in an agricultural watershed in Iowa. In their research, crop
yield calibration reduced the model's parameter uncertainty and predictive
ability. Distributed variables such as crop yield, Soil Moisture (SM), and LAI
are helpful variables in the calibration step to increase the runoff accuracy
and the accuracy of ET or general water balance components
(Hlampooranan et al., 2021).

Achieving accurate results by employing hydrological models could be
a particular challenge for hydrologists in trans-boundary basins, when ade-
quate measured data is not available freely or the available datasets have
different accuracy or resolutions (Aslam et al., 2020; De Lannoy et al.,
2022; Hirbo Gelebo et al., 2022; Liersch et al,, 2017; Mianabadi et al.,
2020; Rougé et al., 2018). The importance of hydrological assessments in
transboundary basins is not only related to the comprehensive evaluation
of water balance but has an impact on the issues related to international
conflict management strategies and sustainable basin-wide management,
particularly in the era of climate change (Hajihosseini et al., 2020; Hirbo
Gelebo et al., 2022; Khan et al., 2017; Liersch et al., 2017; Mianabadi
et al., 2020; Rougé et al., 2018).

Global gridded datasets have been employed to deal with gaps in the
datasets, inadequately measured datasets, or entirely unavailable datasets
(Beck et al., 2017; Eini et al., 2019; Eini et al., 2021b; Koohi et al., 2021).
Generally, these global (or regional) datasets can be categorized into
three groups: purely ground-based, satellite-based, and the combined first
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two datasets (Brocca et al., 2019; Eini et al., 2019; Eini et al., 2021b;
Piniewski et al., 2021). In recent years, remotely sensed datasets have
been widely applied in hydrology for calibration and validation steps of
models and as ancillary datasets, such as meteorological data, in the set-
up step (Alfieri et al., 2022; Eini et al., 2022a). It is highlighted that satellite
products can improve the consistency of distributed hydrological models by
providing spatially distributed data (Ilampooranan et al., 2021; Ren et al,,
2018). Finally, in several studies, the accuracy of results is enhanced by
adding new processes or modifying default empirical equations in
process-based models (Delavar et al., 2022; Delavar et al., 2020; Eini
et al., 2020). All of the mentioned approaches eventually could enhance
the model's results for the water balance simulations at the basin scale.

Soil moisture (SM) is one of the most important variables linking energy
and water cycle and its knowledge is strategic both for runoff formation and
crop development (Azimi et al., 2020; Brocca et al., 2017). This variable,
which covers the basin area, influences runoff, land-atmosphere carbon
fluxes, vegetation, and evapotranspiration processes (Azimi et al., 2020;
Brocca et al., 2020; De Santis et al., 2021; Lal, 2004; Or et al., 2013). In
the real world, SM varies not only temporally and in two spatial dimensions
but also vertically. Since meteorological parameters, soil texture, land cover
and land use, groundwater water table level, and topography are effective
on SM, thus, ground-based measuring of this variable requires a large net-
work of spots. Moreover, the model uses parameterization of soil and
land cover and climate forcing, which is not always accurate. So having spa-
tially distributed information on soil moisture is paramount to improving
their skills and building a robust system (Massari et al., 2014; Ochsner
et al., 2013). Gravimetric sampling or Time Domain Reflectometry (TDR)
can be considered as the most feasible measurement techniques for deter-
mining SM. Simple mechanisms and the capability to determine SM at var-
ious depths are the advantages, while being costly and time-consuming are
the disadvantages of this method (Azimi et al., 2020; Huisman et al., 2001).

To overcome this issue, SM satellite-based products could be an aiterna-
tive of in-situ measurements. According to the literature, several SM prod-
ucts from different satellites are available and usable in hydrological
simulations. Three satellite missions have been particularly launched for
the SM measurements (in 2006, The Advanced Scatterometer (ASCAT), in
2010, the Soil Moisture Ocean Salinity- (SMOS) and, in 2015, the Soil Mois-
ture Active and Passive mission SMAP) (Entekhabi et al., 2010; Kerr et al.,
2010; Wagner et al., 2013). One of the largest projects belongs to European
Space Agency (ESA), namely, the Soil Moisture CCI project (https://esa-
soilmoisture-cci.org/) which uses several active and passive sensors on 13
satellites to provide a globally gridded SM dataset (Brocca et al., 2011;
Dorigo et al., 2017). The global SM satellite-based datasets have success-
fully been applied in flood and runoff modeling in different regions. How-
ever, the small infiltration depth (less than 50 mm) and the large spatial
resolution (more than 25 km) of the SM products cause critical challenges
in hydrological modeling (Azimi et al., 2020; Brocca et al., 2017; Brocca
et al., 2011; De Santis et al., 2021; Modanesi et al., 2020). Moreover,
Modanesi et al. {2020) stressed the importance of satellite surface soil mois-
ture datasets to provide the highest level of information about the impacts
of dry and drought conditions on crop yields in India.

As an agro-hydrological model, the Soil and Water Assessment Tool
(SWAT) has been globally employed in simulating agro-hydrological pro-
cesses, such as surface runoff, evapotranspiration, crop growth, vegetation
dynamics, and snow melt (Akoko et al., 2021; Eini et al., 2023; Gassman
et al., 2014; Piniewski et al., 2017; Tan et al., 2019; van Griensven et al.,
2012; Wang et al., 2019). This model by providing a wide range of tools,
such as farm management modules (e.g., irrigation, fertilizer, tillage, graz-
ing, and pesticide), daily and sub-daily runoff modules, land use changes
module, water quality module, crop growth module, and options for imple-
menting man-made structures, facilitates users to have comprehensive and
reliable assessments of the hydrological cycle within a catchment (Arnold
et al., 2012; Gassman et al., 2007). In addition, this model is freely avail-
able, and users can modify the core of the model for different purposes
(Delavar et al., 2022; Eini et al.,, 2020). An enhanced version of this
model, entitled SWAT+, was recently released (Bieger et al., 2019;
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Bieger et al., 2017; Wagner et al., 2022). The new version is extensively
changed and provides decision tables in the modeling process to improve
the realism of farm management and reservoir operation (Arnold et al.,
2018; Wu et al,, 2020). In addition, in the SWAT + model, the new “gwflow”
module is included for entirely connected interactions between surface and
groundwater simulations (Bailey et al., 2022; Bailey et al., 2020). Several stud-
ies have forced SWAT to run or calibrate with remotely sensed datasets.
Satellite-based products, such as SM, leaf area index, precipitation, tempera-
ture, evapotranspiration, and land use maps, are used in both SWAT configu-
ration and calibration steps (Azimi et al., 2020; Eini et al., 2019; Eini et al,,
2022a; Ma et al., 2019; Pfannerstill et al., 2017). The key highlight of these
studies is calibration SWAT with satellite-based products enhances model per-
formance. Moreover, multi objective calibration helps to reduce uncertainty
range and equifinality of SWAT, especially by employing remotely sensed
datasets (Kundu et al., 2017; Rajib and Merwade, 2016; Rajib et al., 2016).
Still, according to the literature, application of satellite-based SM in the cali-
bration of the SWAT model in transboundary river basins and different
depth of soil is assessed in few studies; in addition, in this study, a new perfor-
mance indicator (SPAtial FFficiency (SPAEF), Demirel et al. (2018)) is used to
evaluate the accuracy of SM as a spatial variable. This indicator is developed
particularly for spatially distributed variables, and the advantages of
employing this indicator is discussed in Demirel et al. (2018).

In this study, a modified version of the SWAT + model for the first time
was calibrated by employing a multi-objective modeling approach that in-
volved not only discharge stations, but also the CCI-SM product (remotely
sensed dataset). Two calibration scenarios were tested: the first, conven-
tional one, employing discharge data; and the second one, employing
both discharge and satellite-based SM data. The effect of multi objective
scenario and single objective scenario on crop yields also was assessed.
The Odra (Oder) River Basin (ORB), a large-scale transboundary river
basin in Central Europe that drains water from areas in the Czech
Republic, Poland, and Germany to the Baltic Sea, is selected as the study
area (Eini et al., 2022b; Piniewski et al., 2017).

2, Methodology
2.1. Study area

The Odra River Basin (ORB) is located in Central Europe and is among
the largest river basins in European Union (the fifth largest river basin). The
mean annual runoff of this transboundary basin is 154 mm (567 m®/s), and
the long-term annual average of precipitation is approximately 650 mm.
ORB covers 119,041 km?, of which 89 % is located in Poland, 4.9 % in
Germany, and 6.1 % in the Czech Republic. of the river is approximately
840 km long, with sources in the Sudetes Mountains in the Czech
Republic and the estuary to the Szczecin Lagoon connected to the Baltic
Sea in its southern part. The great majority of the drainage area spans the
Central European Plain, with only southern-most parts being mountainous
(Fig. 1). More details are available in Piniewski et al. (2021), Piniewski
et al. (2017), and Marcinkowski et al. (2022). The location of ORB and its
hydrologic objects are presented in Fig. 1.

The historical crop yield data for major crops (winter wheat, spring barley,
rapeseed, and corn) were extracted from Central Statistical Office of Poland
(GUS, https://stat.gov.pl/en/topics/agriculture-forestry/) database at prov-
ince level. The average of crop yields in Wielkopoliskie, Zachodniopomorskie,
Lubuskie, Dolnoélaskie, $laskie, E6dzkie, and Opolskie provinces were in-
cluded in this study.

2.2. Configuration of agro-hydrological model

The new version of SWAT, namely, SWAT +, was used in this study.
This study uses a modified version of SWAT +. In the modified version,
minor and major errors in some subroutines in standard SWAT +, such as
misnamed variables related to groundwater module, water quality module,
wrong initialized constant values for surface processes, evapotranspiration
module, tillage operations, crop simulation module, and lateral flow
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module, were fixed and some improvements in wetland condition were
made. These modifications and codes are available on https://github.
com/andrejstmh/SWATplus. The model was set up in the QGIS interface,
which is also an open-access software, using the QSWAT+ plugin
(SWAT + installer v.2.1.4, https://swat.tamu.edu/software/plus/).

The ORB was divided into 1476 subbasins and 20,000 hydrologic re-
sponse units (HRUs). The pre-defined watershed delineation option was
chosen in the setup process and the subbasins and channels from the
Poland SWAT model setup of Marcinkowski et al. (2022) were used. The
ORB model contains 176 lakes (natural lakes and reservoirs), the manage-
ment schedules of 11 major crops (including winter wheat, spring barley,
corn, silage corn, sugar beet, potato, rapeseed, cabbage, apple, and fescue,
which are all rainfed), and the tile drainage system. Weather data (precip-
itation, maximum and minimum temperature, humidity, wind speed)
were extracted for each of the subbasins from a 2 km regional dataset
(Piniewski et al., 2021), and solar radiation was extracted from Copernicus
ERAS global dataset (https://cds.climate.copernicus.eu/). The Penman-
Monteith method was chosen for calculating potential evapotranspiration.
Daily runoff (26 discharge stations, source: The Institute of Meteorology
and Water Management (IMGW-PIB), Warsaw, Poland) and satellite-
based SM were calibrated for the period 1997-2019 (1997-1999 warm-
up period, 2000-2010 calibration, and 2011-2019 validation). Details of
used digital layers, including the 50 m resolution digital elevation model,
land use map, and soil map, are described in Marcinkowski et al. (2022).

The management schedules of mentioned crops is based on potential
heat unit (PHU), and essential operations such as fertilizer, planting, tillage,
harvest or harvest and kill were included in the model. In the modified ver-
sion of used SWAT + model, crops module is based on number of days to
maturity and potential heat units.

2.3. Satellite-based SM dataset

This study employed ESA (European Space Agency) CCI (Climate Change
Initiative) SM version 07.1. This product spans more than 40 years
(1978-2021), and different active and passive sensors are used to generate
this dataset. This product has three active, passive, and combined products;
data are freely available at https://esa-soilmoisture-cci.org/. The resolution
of this product is 0.25° and has daily time step. We have employed the com-
bined dataset, which increases the chance of taking at least one sensed SM
for a particular day and pixel, thus decreasing the number of data gaps. Addi-
tionally, combined satellite-based datasets generally perform better than indi-
vidual sensor datasets (Modanesi et al., 2020). This product has been used in
several studies with different purposes in different regions with diverse cli-
mates and has shown relatively good accuracy (Almendra-Martin et al.,
2021; Dorigo et al., 2017; Kovadevié et al., 2020; Ma et al., 2017; McNally
et al., 2016; Modanesi et al., 2020; Zhang et al., 2019; Zhang et al., 2021).
This dataset was extracted over the 20,000 HRUs, and average-weighted
time series were calculated for each subbasin (1476 subbasins).

According to the literature, satellite-based SM datasets should be corrected
due to the large-scale resolution and irregular time intervals on surface and
depth (Albergel et al., 2008; Wagner et al., 1999). In this regard, Soil Water
Index (SWI) is proposed. This method corrects the anomalies of satellite-
based SM and is based on an exponential filter equation. In this study, SWI
is employed to match the depth of simulated SM and satellite-based SM. More-
over, SWI is used in several studies with different proposes, and the effective-
ness of this method for adjusting the SM time series is highlighted (Brocca
et al., 2010; Dorigo et al., 2015; Dorigo et al., 2011; Liu et al., 2011). A com-
prehensive explanation and different applications of this index are presented
in Massari et al. (2014) and additional features of this index can be found in
Wagner et al. (1999), and Ceballos et al. (2005).

2.4. Objective functions
Finding an appropriate objective function for multi-objective calibra-

tion and validation is controversial, especially when one or more datasets
are satellite-based products and spatially distributed over the study area.
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Fig. 1. The location of ORB in Europe, rivers, discharge stations, and topography.

Two objective functions were employed for discharge and SM values in this
study. The first is a ground- and point-based dataset and the second is a
satellite-based dataset distributed over ORB. According to the literature,

the Kling—Gupta efficiency (KGE) (Kling and Gupta, 2009) is widely used
for discharge calibration (Knoben et al., 2019), and in this study, it also is
selected for the discharge accuracy evaluation. For the distributed variable,
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a relatively new metric, SPAtial EFficiency (SPAEF), is used (Demirel et al.,
2018; Koch et al., 201 8). SPAEF reflects correlation, coefficient of variation,
and histogram overlap of the observed datasets (i.e., CCI-SM) and model's
output (i.e., SWAT+) (Koch et al., 2018). In this study, we have used
SPAFF based on time variation in each subbasin. Monthly SMs are assumed
that are map pixels, and then, SPAEF for each subbasin was calculated.
These two metrics are proposed to evaluate the accuracy of distributed hy-
drological models, particularly if one or more variables are spatially distrib-
uted over the study area, such as SM or evapotranspiration variables.

2.5. Calibration strategy

In the first step which is a single-objective (SO) calibration of discharge,
KGE indicator was selected as an objective function. The second step which
is a multi-objective (MO) calibration of discharge and soil moisture, KGE
and SPAFF indicators were employed in calibration process. It should be
mentioned that before starting to calibrate the model, crop yields were
assessed and crop parameters, such as PHU (Potential Heat Unit), bio-
mass/energy ratio, base and optimum temperature, and harvest index
were fixed.

For discharge simulations at 26 discharge stations (20002010 calibra-
tion, and 2011-2019 validation), SWATplus-CUP (https://www.2w2e.
com/home/SwatPlusCup) SUFI-2 (SPE) algorithm (Abbaspour et al.,
2015) was used with 500 simulations in each iteration. For calibration of
SM and calculating SPAEF indicator, a script in R programming language
was used. The monthly river discharge was calibrated in discharge stations
and SM was calibrated over subbasins at monthly time steps. In the SO step,
the weight of objective function (maximizing KGE) for each discharge sta-
tion was chosen based on long-term average of observed runoff. In the
MO step, the objective function was maximizing KGE (for discharge) and
SPAEF (for SM) indicators at the same time and both of these parameters
had the same weight in the final multi-objective function. It should be men-
tioned that in the MO step, the same list of parameters, which were used in
SO step, was also recalibrated with the similar initial ranges.

In the SWAT+ model, the SM output is the plant available water con-
tent in the soil. Its values can vary between the wilting point (0 mm of
H,0) and saturated conditions (value depending on the soil bulk density).
SWAT + provides SM at daily, monthly, and yearly time steps for the entire
soil profile and 300 mm of topsoil for each HRU. In this regard, firstly, by
employing the SWI index, the CCI-SM dataset was matched according to
the depth (topsoil and entire soil profile) of the model's SM output, then
the adjusted SM was employed for calibration. In the MO step, the constant
value of the wilting point of each soil type was firstly added to the SWAT +
SM outputs at HRU level, and was then used in calibration process.

The calibration step includes sensitive parameters of the SWAT + model
in the study area. The parameter selection was done based on the authors'
experience, sensitivity analyses in SWATplus-CUP software (comprehen-
sive description of sensitivity analyses and uncertainty analysis in the
SWAT model are available in Abbaspour et al. (2015), Yang et al. (2008)
and Abbaspour et al. (2007)), and suggested parameters in the literature
(Abbaspour et al., 2018). Moreover, discharge stations were classified
into six groups according to the subbasins' land use and soil type for spatial
calibration of influential parameters.

3. Results
3.1. Single-objective calibration approach

As mentioned before, in the SO step, discharge stations were calibrated
without considering the SM spatial distribution. Sixteen parameters for
each discharge station groups were calibrated. In the SWAT + model, one
of the newly introduced parameters is PERCO (percolation coefficient,
which varies between 0 and 1). This parameter regulates percolation
from the base soil layer and can be employed to control percolation if an im-
pervious layer or high water table exists (Wagner et al., 2022). According to
the analyses, this parameter was the most influential parameter on
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discharge in the current study. In the first step, this parameter was cali-
brated and fixed to a value of 0.96, which in general results in relatively
high percolation; then, other parameters were calibrated (Table 1). The
mode] generally shows good accuracy in runoff simulations (according to
Knoben et al. (2019)), and average KGE for all discharge stations is
~0.60 and ~ 0.63 in the calibration and validation periods, respectively.
The results for the main discharge stations are presented in Table 2, and
Fig. 2 presents the KGE index in all the discharge stations. However, in
the north of the basin, there is a discharge station with the lowest KGE
(—0.39, average runoff = 2.17 m53/s). Fig. 2 shows that the model in the
south of the basin (mostly mountainous) has the lowest accuracy in runoff
simulations.

3.2. Multi-objective calibration approach

3.2.1. Adjusting the SWI index

Based on the SWI index, the satellite-based SM dataset was adjusted. In
Fig. 3, the effect of the SWI method on CCI SM at basin level is presented,
and SWAT + model SM in three different conditions, including, before cal-
ibration, the calibrated model only with runoff, and calibrated model with
runoff and SM at daily steps, are shown (for the period 2000-2019). As it is
visible, the soil water content in the SWAT + model is underestimated. In
this regard, SM was added to the calibration process. As mentioned, these
variables were calibrated for two levels, including 300 mm of topsoil and
the average available water content in the entire soil profile, Calibration
and validation were done on the subbasin level, meaning 1476 SM times-
series were extracted from CCI SM, then were adjusted using SWI and em-
ployed in calibration and validation periods.

3.2.2. SM and runoff calibration

The objective of MO strategy was to maximize the SPAEF index for SM
and KGE for runoff. In MO strategy, the same set of parameters for each of
the discharge station groups, which was previously used in the SO strategy
(Table 1), was now used also in the MO calibration strategy. The soil avail-
able water content (AWC) was the most sensitive parameter in SM calibra-
tion, according to sensitivity analyses in SWATplus-CUP (Table 1). The
accuracy of runoff simulations for discharge stations significantly increased
(average of KGE in all discharge stations is ~0.67 in the calibration and
~0.69 in the validation periods) compared to the SO approach. It should
be mentioned that for 16 discharge stations improvements in KGE were
achieved, and for 10 discharge stations (mainly close to mountains), the

Table 1
Final values of calibrated parameters for both calibration strategies (average values
across calibration groups) and initial parameter ranges.

Change Parameter Initial range of ~ Final value
method parameters
Lower  Upper Single-objective Multi-objective
band band
Absolute alpha.gw 0.01 0.1 0.06 0.04
value bf max.gw 0.01 1 0.29 0.61

chn.rte 0.05 0.2 0.18 0.08
deep_seep.gw 0.001 0.2 0.05 0.14
epco.hru 0 0.3 0.07 0.05
esco.hru 0.5 1 0.94 0.95
flo_min.gw 1 5 3.31 3.27
lat_time.hru 0.5 2 1.04 0.93
perco.hru 0.85 0.99 0.96 0.96
revap_co.gw 0.02 0.1 0.023 0.04
revap_min. 4 10 7.05 5.76
gw
sp_yld.gw 0 0.2 0.09 0.04

Relative value awc.sol -0.2 0.2 —0.155 0.14
bd.sol -0.3 0.3 0.29 0.02
cn2.hru -0.2 0.2 -0.02 0.11
cn3 swfhru  —-05 0.5 -0.29 -0.35
k.sol —-0.2 0.2 —0.195 -0.02
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Table 2
The accuracy of the model in runoff simulations in the main discharge stations.

River and discharge ~ Observed KGE

: 3
Segonname Qm/s) Single objective Multi objective
Calibration Validation Calibration Validation
Odra at Gozdowice 4741 0.77 0.78 0.81 0.83
Odra at Cigacice 188.1 0.86 0.81 0.75 0.79
Warta at Skwierzyna  117.36 0.73 0.78 0.84 0.85
Noteé at Nowe 66.32 0.56 0.63 0.81 0.88
Drezdenko
Odra at 63.28 0.45 0.53 0.67 0.65

Racibérz-Miedonia

KGE values were decreased. The accuracy of the runoff simulations is pre-
sented in Fig. 4 and Table 2.

Fig. 5 shows the SPAEF distribution for SM accuracy over sub-basins. As
it is visible, SPAEF (average = 0.37 topsoil and 0.31 entire soil profile)
shows that the model has relatively better accuracy in SM simulations. Ac-
cording to Fig. 5, there is no visible pattern in the spatial distribution of the
model's accuracy in SM simulations. Moreover, SPAEF determines that the
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model has better accuracy in topsoil SM simulations. This could be expected
to the nature of the CCI SM dataset, which is reliable for the 5 cm of topsoil.

3.3. Effect of different approaches on crop yields

In order to have a robust comparison between the SO and MO strategies,
crop yields were also assessed. In this regard, the yields of major crops in
the ORB, including winter wheat, spring barley, rapeseed, and corn, were
extracted from the SWAT + model for both strategies and were compared
with observed data, which is the annual average of mentioned provinces
in Section 2.1. It should be mentioned that the SWAT + model provides
the dry weight of crop yields, and for assessments, the observed values
were converted from fresh weight to dry weight yields, assuming that hu-
midity equals 15 % and 20 % for winter wheat/spring barley and corn/
rapeseed, respectively.

As it is visible in Fig. 6, crops have wider ranges of yields in MO ap-
proach, which is closer to observed data (excluding winter wheat). The pos-
itive effect of MO approach is most visible in rapeseed yields. Both
approaches have a wider estimates of winter wheat and mainly over esti-
mated winter wheat yields.

According to Fig. 7, for barley and wheat the SO approach produced
mostly overestimated crop yields compared to the MO approach. The

Legend
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-BamcSea
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Fig. 2. The spatial distribution of the KGE indicator for both strategies, average of river discharge (down left, m®/s), and changes in KGE (improvements or reductions for a

multi-objective strategy relative to a single-objective strategy).
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opposite effect (underestimated yields in SO approach) is visible for rape-
il K b seed. For corn, the difference between yield dynamics in SO and MO ap-
0.8 e U ; proaches is very low. The correlation between simulated and observed
064 % * }0-67 ¥ AU n yields is generally low, mainly due to the fact that numerous anthropogenic
’ :: g A factors, not accounted for in SWAT +, can affect crop yields. Moreover, in
0.4 L B 2015 Central Europe had experienced a severe drought (lonita et al,,
02 2017). In this particular year, according to the observed datasets barley,
o wheat, and rapeseed yields did not change substantially, but corn yields
X 0.0+ were more sensitive to drought. This is understandable, because drought
024 developed in August-September, mostly after harvest of cereals and rapeseed,
whereas corn which is harvested in late summer was more strongly affected.
044 This drop in corn yields is reflected in both SO and MO approaches, however
06 E 5222 180 in the MO approach the response is more in line with observations.
+_Data The model performance in crop yield simulation is presented in Table 3.
0.8 KGE|(MO) KGE-(SO) KGE.(MO) KGEI(SO) To evaluate the [‘)erformance o‘f SVYAT +2in both approache‘s, mean error
Calibration Validation (tons/ha), coefficient of determination (R“) and percentage bias (PBIAS %)

Fig. 4. Distribution of KGE for river discharge in SO and MO approaches.

were employed. According to the mean error and PBIAS, MO approach per-
formed better than SO approach being close to zero which is the optimum



M.R. Eini et al

Legend

SPAEF (topsoil)

I o61-071
0.51-0.60
0.41-0.50
0.31-0.40
0.21-0.30
0.11-0.20 i ::.

0.01-0.10
T T K\Jﬂgl,r'
160 Kilometers

-0.09 - 0.00

I 174-010 TTTTTT
[_Jors

‘ “ j, X |

Science of the Total Environment 873 (2023) 162396

‘Legend
'SPAEF (average)
1061-071
0.51-0.60
0.41-0.50
0.31-0.40
0.21-0.30
0.11-0.20
0.01-0.10
-0.09-0.00
P -i74--010
[Jors

Fig. 5. Accuracy distribution of SM (topsoil and average SM) according to SPAEF.

value for these statistics. As it was already mentioned, correlation between
simulated crop yields and observed data is not acceptable.

4. Discussion

In this study the multi-objective calibration enhanced the SWAT +
model's accuracy in river discharge and crop yields simulations. Improving
the river discharge simulations and water balance components via multi-
objective calibration in the SWAT model was reported before in several
studies. For example, Eini et al. (2020), Eini et al. (2021a), and Delavar
et al. (2022) have employed runoff, aquifer water table, infiltration rate,
crop yields, and ET to increase the model consistency. By providing differ-
ent distributed outputs, SWAT facilitates multi-objective calibration and ro-
bust results for scenario simulations (Delavar et al., 2022). Moreover,
Ma et al. (2019) show that MODIS-based LAI significantly enhanced
the model flexibility and spatial distribution of vegetation cover in sub-
tropic regions.

Rajib and Merwade (2016) employed a time-dependent Soil Moisture
Accounting method in the SWAT model calibration and evaluated SM in
different layers in two watersheds in Indiana. They concluded that adding
SM into the calibration process leads to higher fitness of simulations and ob-
served datasets and improved efficiency metrics; the same result is ob-
served in our study. In addition, it is mentioned that SM calibration based
on in-situ root zone SM provides considerable improvement in SWAT per-
formance (Rajib et al., 2016). The SM, based on Advanced Microwave Scan-
ning Radiometer-Earth Observing System (AMSR-EOS) for 1 cm of topsoil,
was used in their study for HRU and sub-basin level, and it improved the
model's outputs in terms of root zone SM and runoff with corresponding
measured datasets (Rajib et al., 2016). Azimi et al. (2020) showed that
satellite-based SM assimilated from SMAP and Sentinel-1 could improve
the accuracy of river discharge simulations in the SWAT model.

In the SWAT model, the ET processes start from the HRU level at daily
steps, and each HRU has different land use, soil type, and slope (Arnold
etal., 2012; Gassman et al., 2007; Gassman et al., 2014). In this regard, cal-
ibrating the SWAT model at the HRU level, particularly for distributed var-
iables, could lead to more consistent results (Ma et al., 2019). In the current
study, calibration was done at the subbasin level due to a large number of

HRUs, large variability of hydroclimatic parameters, which affect the SM
values, and the resolution of CCI SM product. Thus, a similar approach
could be done in the smaller watershed and evaluate the SM accuracy of
the SWAT + model at the HRU level. Pfannerstill et al. (2017) proposed
that expert knowledge could help accomplish hydrologically reliable
model results regarding the simulation of runoff and water balance compo-
nents. Multi-objective calibrated models can be used for water balance and
water accounting assessments; in addition, in transboundary basins, these
models are helpful for (inter-) national studies (De Lannoy et al., 2022).
Moreover, we would like to mention that capturing the dynamic of crop
yields in this large basin with a wide range of recorded crop yields was
one of our limits. In future works, this limit can be addressed by employing
satellite-based datasets such as LAI or canopy height estimations.

The calibration process using SM can change the water balance of the
basin and increase the uncertainty of the output; thus it should be men-
tioned that the water balance of the basin should be checked via available
parameters such as ET, crop yields, groundwater recharge, and river dis-
charge (De Lannoy et al., 2022; Delavar et al., 2022; Eini et al., 2020;
Koohi et al., 2022). Moreover, it could be recommended to evaluate the ef-
fect of root zone soil moisture datasets (such as the dataset which is pro-
vided by Grillakis et al. (2021) or Copernicus Global Land service) in
improving the accuracy of the SWAT + model. Furthermore, it could be
stated that satellite-based soil moisture data can be validated by in-situ ob-
servations and then added into the calibration step this approach can de-
crease the uncertainty of hydrological modeling; however, in large river
basins it could be expected that only short time series of in-situ soil moisture
are available. Effect of multi-objective calibration on crop yield, ET, and in-
filtration rate can be assessed, and this could decrease the uncertainty of
comprehensive hydrological modeling.

5. Conclusion

In this study, a transboundary basin in the Baltic Sea region (Odra river
basin) was selected to investigate the accuracy of the SWAT + agro-
hydrological model in river discharge, crop yields and soil moisture simula-
tions. A satellite-based soil moisture dataset (CCI SM) was chosen as the ob-
served soil moisture dataset, In the single-objective calibration (only



M.R. Eini et al.

6 -
g 54 4 |[SEEES 45.02
]
[l
i)
K=/
.1;4 7 3.1
o 3.69
(]
]

............. 3.16

& 3
[a

2 . Meant1SD|U

- - Median Line |
T T L]
Wheat (observed) Wheat (SO) Wheat (MO)

I -

6
©
<
23
c
he]
5 °]
K
>
o
e
S

4 4
Py
[a]

Mean = 1 SD
34 Median Line
T T T
Corn (observed) Corn (SO) Corn (MO)

Science of the Total Environment 873 (2023) 162396

Dry crop yield (tons/ha)
N w
(4] [=]

Mean + 1 SD
=~ Median Line

Barley (observed) Barley (SO) Barley (MO)

3.0

Mean £ 1 SD

-- Median Line

N
3
L

Dry crop yield (tons/ha)
»
o

-
(3]
L

1.0 T

T T
Rapeseed (observed) Rapeseed (SO) Rapeseed (MO)

Fig. 6. Distribution of major crop yields in SO and MO strategies with the observed data (for period 1999-2019 for winter wheat, barley, and rapeseed; for period 2004-2019

for corn).

discharge) approach, the SWAT + model showed good accuracy in runoff
simulations, and the average KGE was above 0.60 and 0.63 in the calibra-
tion and validation periods, respectively. Satellite-based soil moisture was
adjusted with SWI index and was added to the calibration step as the second
variable in the multi-objective approach. In the multi-objective approach
(discharge and soil moisture), the accuracy of simulations in river discharge
stations substantially increased (KGE = 0.67 in the calibration and 0.69 in
the validation periods) compared to the single-objective approach. The
SPAFF index indicated that adding soil moisture in the calibration process
(as we did using MO approach in this study) could improve the model's re-
liability. Moreover, assessing crop yields shows that multi-objective calibra-
tion also could improve the accuracy of model in estimating crop yields.
The current results and presented approach can be used in transboundary
river basins and regions that lack observed data, and it is important for cli-
mate change studies since this method delivers a robust model. It will also
be a useful approach for model-based water accounting studies. Moreover,
we recommend comparing different soil moisture products (especially
high-resolution products) in future studies and trying to capturing dynamic
of crop yields.
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Table 3
Performance of SWAT + in crop yields simulations for both approaches.
Winter Barley Rapeseed Corn
wheat
SO MO SO MO SO MO SO MO
Mean error (tons/ha) 0.45 0.06 0.52 0.09 —-0.38 0.06 014 0.03
R? 032 014 O 0.08 4] 0.05 018 0.31
PBIAS % 12 1.7 17 3.2 -18 2 2.9 0.6
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ARTICLEINFO ABSTRACT

There is a trend in using Artificial Intelligence methods as simulation tools in different aspects of hydrology,
including river discharge simulations, drought predictions, and crop yield simulations. The motivation of this
work was to assess two various concepts in applying these methods in simulations and projections of hydrological
drought. In this study, Standardized Runoff Index (SRI) was simulated and projected using Artificial Neural
Networks (ANNs). Maximum and minimum temperature, precipitation, and meteorological drought indicators
(the Standardized Precipitation Index (SPI)) were selected as predictors. A direct approach (directly simulating
and projecting SRI) and an indirect approach (simulating and projecting river discharge, then calculating SRT)
were assessed. Our results show that the indirect approach performs better than the direct approach in simu-
lations of SRI in four discharge stations in the Odra River Basin (a transboundary river basin in Central Europe)
from 2000 to 2019. Moreover, a considerable difference between these two approaches was detected in pro-
jections of hydrological drought under the RCP8.5 emission scenario for two horizons (near future: 2021-2040,
and far future: 2041-2060). Based on the run theory, both approaches show somewhat similar drought condi-
tions for future projections.

Editor: Fernando A.L. Pacheco

Keywords:

Climate change
Hydrological drought
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Data-driven models

1. Introduction

Drought is an indicator of the below-normal availability of water in
the environment ( ). In various re-
gions of the world, drought events have been increasing in recent years,
and their consequences have been more harmful owing to 1ncreased
water needs and climatic changes (

). Thus, drought has drawn consideration, and studylng the

attributes of this natural hazard from various points of view has been a

topic of high priority for researchers ( ). Drought

begins with a substantial lack of precipitation and continues to agri-

cultural drought (lack of water in the soil), and then causes hydrologlcal
drought (declining in river discharges) (

). Hydrological and agricultural droughts threaten the

food security of society, farmers’ financial situations, and water acces-

sibility for people and the ecosystem ( H
). Moreover, it is reported that drought events correlate with inland
and international conflicts in some parts of the world ( ). In

this regard, assessing the projections of drought events could be an
emergency practice, especially in transboundary river basins (
).

Drought can be divided into different types, such as meteorological
drought, hydrological drought, and agricultural drought (

). In this regard, several drought indicators have been
developed, such as SPEI (Standardized Precipitation Evapotranspiration
Index) ( ), SPI (Standardized Precipitation
Index) ( ), and SRI (Standardized Runoff Index)
( ). By employing statistical methods, these in-
dicators convert physical variables, such as precipitation, runoff, soil
moisture, and evaporation, to categorized values and make it easier to
interpret and analyze the lack of available water in a basin over a long
period ( ).

Precipitation and river discharge amounts can be used for deter-
mining meteorological droughts and hydrological droughts, respec-
tively. These variables are available for historical periods (measured
data) and can be estimated for future horizons using modeling
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approaches. According to the concept of climate change, future pro-
jections could be expected in various scenarios ( H
). These scenarios range from optimistic scenarios to
pessimistic scenarios. Employing General Circulation Models (GCMs)
( ) under defined scenarios
for different honzons is the most common way of projecting precipita-
tion and other climatic parameters; then projecting meteorological
drought can be estimated ( ).
Several modeling approaches for projecting river discharge can be
used, such as process-based and data-driven approaches (
; ). In
general process-based hydrologxcal modeling is time-consuming and
requires extensive data, such as land use land cover maps, soil proper-
ties, climatic variables, and management schedules ( ).
On the opposite, data-driven approaches can model river discharge by
employing the minimum variables, such as climatic variables (

). Then, projections of river
discharge (accordmgly, hydrological drought) can be estimated by
combining GCMs (as inputs), hydrological models, and data-driven
approaches.

Artificial intelligence (AI) has recently attracted consideration from
hydrologlsts to simulate and project various phenomena (

: ). Al-based ap-
proaches are based on statistical and mathematical methods and try to
find a pattern between input data and outputs. These approaches have
shown high accuracy in simulating a broad range of processes in the
realm of hydrology, agriculture, and meteorology, such as simulations
and projections of soil moisture, crop yield, wind speed, solar radiation,
river discharge, drought, and sedlmentatlon ( 4

t]

). According to the literature, AI-based models, such as ma-
chine learning and deep learning, have considerably impacted drought
management and have been used as alternative methods for process-
based hydrological models ( ;

). Since drought is characteristically known as an attribute of
nonlinearity and instability, Al-based models have the capacity of self-
organizing and self-adaptive procedures with the nonlinear character-
istic capable of simulating and projecting hydrological and meteoro-
logical data for drought detections ( ). A long list of
Al-based models has been tested in drought simulations. These models
can generally be grouped into unsupervised and supervised learning
methods. Supervised learning requires labelled data during training to
enable the model to make predictions based on known outputs. The
model learns the relationship between input and output variables by
optimizing its parameters using the labelled examples. In contrast, un-
supervised learning deals with unlabeled data to discover patterns and
structures without predefined outputs. The model explores the data to
identify similarities, differences, or clusters, revealing underlying re-
lationships. Unsupervised learning is often used for clustering, anomaly
detection, and dimensionality reduction tasks { ).

Supervised methods, such as artificial neural network (ANN), sup-
port vector machine (SVM), random forest (RF), and classification and
regression tree (CART), are more considered in drought simulations and
have shown reliable results in different studies ( ).

Selecting predictors (as inputs) plays a vital role in the Al-based
modeling approach. Various variables in different studies have been
imported as predictors, such as river discharge, climatic parameters,
meteorological drought indicators, soil moisture, precipitation anoma-
lies, humidity, and evaporation, to simulate hydrological drought
through Al-based methods ( 5 ).
These inputs have been extracted from different sources, such as
measured databases and remotely sensed datasets. In some studies, it is
noted that adding drought indicators in the simulation process of data-
driven models could enhance modeling results and leads to a more
reliable model ( ). Moreover, drought indicators can
increase the number of predictors; in their nature, these indicators have

Science of the Total Environment 898 (2023) 165523

a memory of past conditions. As mentioned, a hydrological drought is a
consequence of a meteorological drought and could happen several
months after a meteorological drought. Consequently, meteorological
drought indicators have a significant impact on hydrological drought
simulations when utilizing Al-based models. The first approach is the
direct simulation of drought indicators. In this approach, drought in-
dicators are calculated directly from inputs. The second approach is the
indirect approach, in which drought indicators are calculated based on
simulated runoff by Al-based models ( ). Both ap-
proaches have their advantages and limitations. Indirect simulation
using Al-based models can provide a more accurate prediction of
drought based on physical processes, but it may be more computation-
ally intensive and require more data to train the models. In comparison,
direct simulation relies on the assumption that past drought events can
be used to predict future events, which may not always be the case, but
can be less computationally intensive and require fewer data. A direct
approach in simulating and projecting hydrological droughts was used

in , whereas stream flow simulations and drought
projections using ANN by an indirect approach was done in
, and

The similarities and differences between dlrect and indirect ap-
proaches are open questions and motivated us to analyze both ap-
proaches for the first time in a large transboundary river basin (Odra/
Oder River Basin) in Central Europe. Drought in the Odra River Basin is
typically caused by a combination of factors, including low precipita-
tion, high temperatures, and strong winds (

). This region, as well as other river basins in Central Europe, has
experienced severe droughts in recent years, which resulted in water
shortages, changes in low riverine ﬂow, crop losses, and forest fires
( H ;

; ). Accordlng to s
alteratlons in the hydrological cycle over the Baltic Sea basins are pro-
jected to become noticeable in the following decades. At the same time,

concluded that the meteorological drought situa-
tions in central and eastern Europe remained unchanged over the
1949-2018 period. Hence, assessments of historical and drought pro-
jections in this region are extremely important as a growth in the
severity of different types of droughts in the coming decades is expected
( B ).

The objectives of this study are simulations and projections of hy-
drological drought by employing ANN through direct and indirect ap-
proaches and then assessing the similarities and differences between
projections. In this regard, the RCP8.5 climate change scenario (the
concentration of carbon dioxide that delivers global warming at an
average of 8.5 watts/m? by 2100 ( )) based on GCMs for
two horizons is selected, and then by employing a supervised method
(ANN), droughts are projected. In this study, four hypotheses are
considered: (1) ANN has a high accuracy in runoff and drought simu-
lations; (2) meteorological drought indicator (i.e., SPI) can be used as a
predictor of runoff and hydrological drought; (3) with the same pre-
dictors, direct and indirect approaches do not have considerable dif-
ferences in estimating hydrological drought indicators; (4) under the
condition of the worst scenario for far future droughts are expected to
become more frequent and more severe than for the historical period.

2, Materials and method
2.1. Study area

The Odra (Oder) River Basin (ORB) is located in the Baltic Sea region
(placed in Poland (89 %), Germany (4.9 %), and the Czech Republic (6.1
%)) and is listed as the fifth largest river basin in European Union. This
transboundary basin’s mean annual river discharge is 154 mm (567 m%/
s), and the long-term yearly average of precipitation is around 650 mm.
ORB covers 119,041 km?, and the river is approximately 854 km long
(the second longest river in Poland), with sources in the Sudetes
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Fig. 1. The location of the Odra River Basin in Central Europe and selected discharge stations and their drainage areas, and river network.

Table 1
Statistical parameters of selected river discharge stations (2000-2019).

River and discharge station Odra at Gozdowice

Odra at Cigacice

Note¢ at Nowe Drezdenko Odra at Racibérz-Miedonia

D A
Drainage area (km?) 110,000
Mean river discharge (m®/s) 472
Absolute Minimum river discharge (m®/s) 144
Absolute Maximum river discharge (m®/s) 1412
Standard deviation (m®/s) 235

B C b
37,200 16,500 6700
182 68 61
53 27 11
680 188 413
107 27 45

Mountains in the Czech Republic and the estuary to the Szczecin Lagoon
connected to the Baltic Sea in its southern part. The great majority of the
drainage area spans the Central European Plain, with only the southern-
most regions being mountainous ( ) ( 5
H ; ). This
river is a narrow and mountainous river in its upper section (upstream
from the Kedzierzyn-KoZle city). Then, on its lower section (outlet of
Warta River), the river is roughly flat, and which slope changes between
0.05 m/km and 0.001 m/km ( ). The study area and
Central Europe experlenced severe drought during the summer of 2015
( ). In this study, four discharge
stations from the Instltute of Meteorology and Water Management —
National Research Institute (IMGW-PIB) in this basin are selected. In
and , the location and details of these discharge stations are
presented.

2.2. Hydrometeorological data

A regional gridded weather dataset (G2DC-PL+: a gridded 2 km daily

climate dataset for the union of the Polish territory and the Vistula and
Odra basins) was selected to extract precipitation and maximum and
minimum temperature over this region. The time span of this dataset is
1951-2019, and daily precipitation, maximum and minimum temper-
ature, wind speed, and relatwe humidity are included in G2DC-PL+
( ). This dataset is
employed in several studles, especially in agro-hydrologlcal modehng,
and has shown acceptable accuracy (
). River discharge data were obtalned from the
Institute of Meteorology and Water Management (IMGW-PIB:
). In this study, four river discharge
stations were selected. The selections are based on the annual river
discharge, and these river discharge stations can be considered as the
main river discharge stations. The annual average of the river discharges
varies between 61 m3/s (Odra at Raciborz-Miedonia) and 472 m°/s
(Odra at Gozdowice). The properties of the selected river discharge time-
series are presented in
This study employs the monthly average of the maximum and min-
imum temperature, river discharge, and monthly precipitation for
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2000-2019. It should be mentioned that the precipitation and temper-
ature variables were calculated for each drainage area separately (four
drainage areas based on river discharge stations).

2.3. Standardized drought indicators

SPI and SRI were selected as meteorological and hydrological
drought indicators, respectively. SPI and SRI as drought indicators can
be calculated by precipitation and river discharge data, respectively.
These indicators can show the drought in different time scales. The SPI
was designed to compute precipitation scarcity for various time scales
( ). These time scales reflect the impact of
drought on the availability of different water resources.

originally determined the SPI for 3- (short-term drought), 6-
(mid-term drought), and 12-, 24-, and 48-month (long-term drought)
time scales. SPI or SRI can be grouped into different classes, including
above 0 as the wet condition, below 0 as the dry conditions, and less
than —1 as the severe drought. Nevertheless, these classifications could
vary in different studies and regions (e.g., less than —1.5 can be chosen
as severe drought in dry areas ( )). The concept and
calculation methods of SPI (the same as SRI) are presented in several
studies, such as , and

. We employed long-term precipitation data (30 years,
1990-2019) to increase the accuracy of SPI estimation, but 20 years
(2000-2019) of river discharge data were employed to calculate SRL

This study used gamma distribution to calculate SPI and SRI in-
dicators. SPI and SRI can be calculated for different monthly scales.
According to , in determining the hydrological
drought, the gamma distribution performs better for low runoff values
compared to the log-normal distribution; also sug-
gested that the gamma distribution can be applied to other drought-
related variables such as river discharge. Our research has chosen SPI-
1 to SPI-12 as inputs to the data-driven model. For hydrological
drought analyses, SRI-3 (short-term drought), SRI-6 (mid-term drought),
SRI-9 (mid-term drought), and SRI-12 (long-term drought) were
assessed.

In calculating drought indicators for the future, in the first step, the
gamma distribution was fitted using the historical time series (reference
periods were 1990-2019 and 2000-2019 for SPI and SR], respectively).
Then, the fitted distribution was employed for the projections.

To evaluate the hydrological drought properties, the run theory is
employed ( ). Based on this
theory, drought severity, duration, and frequency are equivalent to the
accumulation of the SRI values below the threshold level (here -1 is
assumed as the threshold level), the number of months in which the SRI
value is continuously below the threshold level, and the number of
drought events when the SRI is below the threshold, respectively (

Peak
T-me

|
/ \4— = Drought Duration-h-——————»}
1

&-05F
mugm

Intensity

Start Time End Time

o

) 5 10 15 20 25 30
Time (months)

Fig. 2. Drought properties (SRI or SPI) based on run theory assumptions (in the
current study, the threshold level is —1); adopted from i
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H ). illustrates the run theory
assumptions (-1 is assumed as the threshold level).

According to the objectives of this study, SPI was chosen as the
influential input parameter for hydrological drought simulations by
data-driven models, as well as precipitation and temperature. Moreover,
it is employed in other studies as an influential predictor of different
types of droughts and crop yield simulations (

). Additionally, it is crucial to have more
rational 1nputs in data-driven models to have a robust model. Monthly
precipitation indicates the amount of precipitation in a given month, but
river discharge and hydrological drought, especially in large basins and
cold climates, also rely on precipitation in previous months. Hence, SPI,
as an indicator of short-term to long-term meteorological droughts,
could increase the reliability of data-driven models to simulate river
discharge and hydrological drought. Another purpose of selecting SPI as
a predictor of SRI is that this variable can be obtained from precipitation
for both historical and projection periods. While estimating other cli-
matic variables, such as solar radiation, wind speed, and humidity, for
the projection period is not simply feasible.

2.4. Artificial neural network design

ANNs, as supervised machine learning models, are extensively
employed in Earth’s process simulations and projections (

). Among the wide list of algorithms that can
be used for the learning process in ANN-based models, Feed Forward
Back Propagation Neural Network (FFBPNN) has been employed widely
and has shown a robust algorithm for classification, regression, and
pattern encoding between inputs and outputs ( 5

). In this algorithm, one layer belongs to inputs and one
layer to outputs, and the algorithm can have one or more hidden layers
for data processing and model building. In this study, Levenberg-
Marquardt backpropagation was selected to train the FFBPNN (based
on the trial-and-error process and suggestions in other studies in agro-
hydrological simulations). Several studies have shown that one hidden
layer has sufficient ability to process the data and find the pattem be-
tween inputs and outputs ( 3

); hence, in this study, one hldden layer was
employed, and the sigmoid and linear activation functions were used in
to transfer data from inputs to the hidden layer and from hidden layer to
output layer, respectively. Different settings were tested to select the
number of neurons in the hidden layer, and 12 neurons were employed.
After coordinating the input and output data between —1 and 1, data
were randomly divided into three blocks (training, test, and validation,
respectively 70 %, 15 %, and 15 % of data).

We used monthly minimum and maximum temperature, monthly
precipitation, and SPI-1 to SPI-12 as predictors of runoff (indirect
approach) and SRI (direct approach). The details of inputs and outputs
are described in . In the direct approach, SRI is simulated and
projected directly from mentioned predictors; in the indirect approach,
river discharge is the output of ANN, and accordingly, SRI is calculated.
Then, by passing the training, validation, and test steps, two ANN
models will be ready for estimating runoff (indirect approach) and SRI
(direct approach) projections.

2.5. Climate change scenarios

In this study, four GCMs out of 19 GCMs (based on Coupled Model
Intercomparison Project — Phase 5 (CMIP5), built in GCMs in Lars-WG
6.0 software, ) were chosen,
and changes in precipitation and temperature were extracted from these
models for RCP 8.5 emission scenario for two horizons (2021-2040 as
the near future, and 2041-2060 as the far future). The method of
selecting the GCMs has been described in our previous study in

, which is freely available, and to reduce the duplicates, we have
included a brief of this part in
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Table 2
Features of climatic parameters in selected GCMs under RCP8.5 in the current study, 1990-2019 was selected as baseline (more details can be found in Eini et al.
(2023)).

Scenario Model Near Future (2021-2040) Far Future (2041-2060)

Temperature (absolute change}  Precipitation (relative change)  Temperature (absolute change)  Precipitation (relative change)

Moderate CMCC-CM - - 2.51 0.04

Warm and wet  GFDL-CM3 2,54 0.14 3.95 0.12

Warm and dry HadGEM2-ES 2.19 0.00 3.23 -0.04

Moderate NCAR-CESM1-CAM5 146 0.05 - -
Table 3

Details of employed performance indicators and optimum values (O: observed data; M: simulated data; N: number of data; i: month indicator; avg.: average).

Index Unit Equation Range of index Optimum Value
o . 2
R - 53 (01— Oug) (M~ Mavg) f0, 13 1
VS (0= Om)” + (M~ M)’
RMSE - [V - 0) [0, +o0) 0
y N
PBIAS % 100 x 21 (Mi — 0:) (~o0, +o0) 0
o
-/ -1+ -1+ (-1
KGE - (-, 1) 1
: . H#m oM X fo
r: Pearson correlation coefficientp =2,y = [———=
efficlents Ho ) (”0 = I‘M)
Table 4
List of software, data, computational packages, and environments used in this study.
Tool or data Description Source
HydroGOF (R package) Evaluating the performance indicators
Climate Data Tools (CDT, R package) SPI and SRI calculations
LarsWG6 LARS-WG weather generator

G2DC-PL+ Time series of climatic variables

River discharge

Time series of discharge data from the Institute
of Meteorology and Water Management (IMGW-PIB)

In the process of selecting GCMs and determining future climatic
scenarios, we evaluated the annual average changes in temperature and
precipitation for each GCM. The climatic scenarios are categorized into
three: the moderate scenario, the warm and dry scenario, and the warm
and wet scenario. For the moderate scenario, the GCM with the average
of changes in precipitation and temperature compared to other GCMs
was selected. The GCM for the warm and dry scenario was chosen based
on the maximum temperature increment and maximum precipitation
decrement. Similarly, the GCM for the warm and wet scenario is selected
based on the maximum temperature increment and precipitation
increment. The models and average changes in temperature and pre-
cipitation are shown in . It should be mentioned that these sce-
narios are the average scenarios for ORB. The daily precipitation and
temperature data were downscaled using Lars-WG6 software by
considering 1990-2019 as the baseline period.

2.6. Performance indicators, tools, and workflow

For assessing the accuracy of simulated datasets, KGE (Kling-Gupta
Efficiency, ), RMSE (Root Mean Square Error), PBIAS
(Percent bias), and R-square (R, Coefficient of Determination) were
applied ( ). It should be pointed out that there are no guidelines
for selecting these performance indicators, and these indicators can be
chosen based on the user’s experience and the type of simulated data.
The sources of data, software, and computational packages are described
in . The workflow of this study is presented in

3. Results
3.1. Indirect simulation of hydrological drought

In the indirect simulation approach, by employing data and methods
mentioned in , in the first step (monthly) river discharge for
four discharge stations was simulated, and in the second step SRI-3, SRI-
6, SRI-9, and SRI-12 were calculated.

3.1.1. River discharge simulations
ANN has shown high accuracy in river discharge simulations, ac-
cording to the presented results in . In this regard, KGE varies
between 0.83 and 0.95, PBIAS varies between —9.4 % and 1.1 %, and R?
varies between 0.75 and 0.92. According to the criteria of performance
indicators in runoff simulations (i.e., and
), ANN has a “very good” performance in runoff
simulations. In addition, mode! performance in training (KGE = 0.89,
PBIAS = —1.5 %, R? = 0.87), validation (KGE = 0.94, PBIAS = —2.1 %,
R? = 0.9), and test (KGE = 0.91, PBIAS = 2.2 %, R? = 0.91) steps were
also very good. shows simulated time series against observed
datasets. A visual inspection suggests that the discharge simulation by
the ANN in the lowland catchment (gauge C) is excellent, especially for
low flows. In contrast, simulations are much worse in the mountainous
(gauge D) and semi-mountainous (gauge B) catchments, in which low
flows are strongly underestimated and the model simulates zero flows
for some months. Predictions for the entire basin (gauge A) are better
than for mountainous catchments, but not as good as for a lowland
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Fig. 3. Graphical diagram of the implemented methodology.
Table 5 stations. In Fig. ¢ distribution of calculated SRI values based on observed
Model performance in river discharge simulations (2000-2019). data, indirect approach, and direct approach are illustrated by a violin
i i iver di 3 o 2 plot. The distribution of SRI values is well captured for both direct and
Discharge station Mean river discharge (m>/s) KGE PBIAS% R
A oy ) Yy N indirect methods.
B 182 086  —4.2 0.77
g 2’13 3'2: ;-‘1‘ g-‘;g 3.2. Direct simulations of hydrological drought indicators

catchment. Low flows in gauge A are usually underestimated.

3.1.2. Accuracy of indirect calculation of hydrological drought
Simulated river discharges were used in SRI calculations. According
to the presented results in 1able 6, calculated SRI based on simulated
river discharge performs well in most cases. Table 6 shows that long-
term hydrological drought indicators (i.e., SRI-9 and SRI-12) are more
accurate than short-term indicators. A low accuracy can be seen in
discharge station D, which results from poor simulations presented in
Fig. 4. Accuracy of calculated SRI based on simulated runoff against
calculated SRI based on observed data, in terms of KGE (0.28 to 0.95),
RMSE (0.15 to 0.64 ms/s), and R? (0.6 to 0.97), is high. Fig. 5 presents
calculated SRI values against simulated SRI values for all discharge

Direct simulation refers to simulating SRI directly from predictors.
According to Table 7, ANN could not show high performance in simu-
lating SRI directly from predictors. While correlation (R?) of simulated
and calculated SRI are acceptable, in terms of KGE, ANN could not show
acceptable accuracy. In F'ig. 5 and I'ig. 6, the time series of SRI and the
distribution of these indicators in all conditions are presented.

3.3. Hydrological drought characteristics

Historical hydrological drought characteristics based on run theory
are presented in Table 8. According to the results, the outlet of the basin
(station A) has experienced 34 months of severe short-term drought
(SRI-3 < —1), and the harshest drought was indicated as —1.56. The
severity (see Fig. 2) of short-term drought in this discharge station,
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Fig. 4. Simulated river discharge time series against the observed data (2000-2019) — A, B, C, and D refer to discharge stations.
which represents the total river discharge of the basin, is —42.32, and
the intensity is —1.24. Estimations based on the indirect approach show
that in this discharge station, 33 months in the studied period
ble 6 (2000-2019) have recorded severe droughts which is close to the
Table

Accuracy of calculated SRI based on simulated river discharge (indirect
approach) against calculated SRI based on observed data (2000-2019).

Drought indicator Discharge station KGE RMSE R?
A 0.69 0.39 0.83
B 0.5 0.46 0.76
SRI-3 C 0.84 0.27' 0.91
D 0.28 0.64 0.6
A 0.86 0.29 0.9
B 0.63 0.38 0.84
SRI-6 C 0.88 0.2 0.95
D 0.57 0.53 0.71
A 0.94 0.26 0.92
B 0.75 0.33 0.87
SRI-9 C 0.91 0.17 0.96
D 0.42 05 0.75
A 0.89 0.24 0.93
B 0.86 0.29 0.9
SHRILS C 0.95 0.15 0.97
D 0.37 0.47 0.77

calculated SRI-3 based on observed data. However, the peak value
(—2.23) and severity (—46.44) are higher. Simulated SRI-3 based on the
direct approach has determined less severe droughts (25 months) and
severity (—32.71). In mid-term drought simulations (SRI-6 and SRI-9),
the direct approach in discharge station A has shown a lower number
of severe droughts (23 and 22 months) and lower severity (—30.61 and
— 29.45) against the calculated SRI based on the indirect approach and
observed data. In long-term drought simulations in this discharge sta-
tion, the indirect approach has a close peak (—1.73) and the same
number of severe drought events (27 months) as the direct approach.

In discharge station B, the direct approach has determined a lower
number of severe drought events against the direct approach and
calculated SRI, while better estimations in the peak value (the most
severe drought) can be seen in the direct approach against the indirect
approach. Based on observed data, the number of months with severe
droughts in this discharge station varies between 24 (SRI-3) to 33 (SRI-
6), and intensity is close to —1.36 on average.
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In discharge station C (lowland catchment located in the northeast of
the basin), the direct approach has a higher estimated number of months
with severe droughts (30 to 49 months) and higher severities (—37.08 to
—70.29). On average, the number of months with severe drought based
on calculated SRI from observed data is around 27 months, and the in-
direct approach estimated 30 months. The average of the most severe
events is —1.91 based on observed data in this discharge station.

Discharge station D, located in the foothills of the mountainous area,

Table 7
Accuracy of direct simulations of SRI against calculated SRI based on observed
data (2000-2019).

Drought indicator Discharge stations KGE RMSE R?
A -3.5 0.59 0.61
B -9.1 0.7 0.47
SRI-3 C —-36.7 0.66 0.59
D -2.4 0.74 0.41
A -11 0.6 0.62
B -8.6 0.61 0.58
SRI-6 C -21 0.6 0.68
D -11 0.7 0.51
A 14 0.57 0.65
B -0.36 0.61 0.57
SRI-9 C -14 0.48 0.75
D ~-11 0.65 0.55
A -19 0.58 0.64
B -5.2 0.64 0.55
SIS C -27 0.6 0.65
D -15 0.74 0.45

has experienced more severities (—39.03 to —46.99) related to other
discharge stations and higher peak values (—2.19 to —2.85). Results
based on the indirect approach have higher values based on run theory
indicators, which can be explained by underestimation of low flows
reported above. In general, larger drainage areas have experienced
lower numbers of drought events and lower intensities. More details are
presented in

3.4. River discharge and hydrological drought projections

Since SRI calculation based on the indirect approach needs to be
determined from river discharge, in the following steps, discharge pro-
jections for each scenario are first provided, then hydrological drought
projections based on run theory are discussed.

3.4.1. River discharge projections

River discharge was projected by forcing the trained ANN in the
indirect approach with projections of climatic parameters. pro-
vides changes in river discharge against the historical period
(2000-2019). These results reveal that in the outlet of ORB (discharge
station A) in the first quarter of the year (JFM), a substantial decrease in
river discharge is expected, and in May and June, a reduction in river
discharge could be expected. In all discharge stations, it can be seen that
the moderate scenario for the near future (NF: 2021-2040) has projected
the lowest river discharge, while the moderate scenario for the far future
(FF: 2041-2060) in most of the months has projected the highest river
discharge. The annual average of river discharge in the outlet could vary
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between 484 m>/s (moderate FF) and 440 m>/s (moderate NF). More
details can be found in .

3.4.2. Indirect projections of hydrological drought

Similar to historical analyses, the run theory was employed to
analyze the projected hydrological droughts. presents the pro-
jected hydrological drought indicators via the indirect approach. In
general, it can be seen that the most severe events of projected drought
indicators are more intense than in the historical period. The number of
severe droughts (months) does not show considerable changes
(excluding discharge station D) compared to the historical period.

Table 8

Science of the Total Environment 898 (2023) 165523

Regarding the severity indicator (sum of SRI < -1), in all scenarios, more
severity is estimated. Accordingly, the intensity of drought in all pro-
jections is increased.

3.4.3. Direct projections of hydrological drought

According to the projected drought indicators via the direct
approach, short term drought indicators based on the run theory have
significantly higher values. shows higher severity, duration, and
intensity via the direct approach in scenarios compared to the historical
period and the indirect approach for SRI-3 and SRI-6. There is no visible
pattern in the results for different scenarios. Drier and warmer climate

Severe hydrological drought (SRI < —1) characteristics based on run theory for 20002019 estimated for four discharge stations using three approaches (direct,

indirect and calculated).

Discharge Run SRI-3 SRI-6

SRI-9 SRI-12

station theory

indicators Calculated

Direct Indirect Direct Indirect

Calculated

Direct Indirect  Calculated Direct Indirect  Calculated

Peak value
(most
severe
drought)
Number of
severe
droughts
{months)
Severity
(sum if
SRI < -1)
Intensity
(Severity/
Duration)
Peak value
(most
severe
drought)
Number of
severe
droughts
(months)
Severity
(sum if
SRI < -1)
Intensity
(Severity/
Duration)
Peak value
(most
severe
drought)
Number of
severe
droughts
(months)
Severity
(sum if
SRI < -1)
Intensity
(Severity/
Duration)
Peak value
(most
severe
drought)
Number of
severe
droughts
(months)
Severity
(sum if
SRI < -1)
Intensity
(Severity/
Duration)

-2.08 —1.56 —-2.38 -1.61

25 33 34 23 40

-32.71 —46.44 —42.32 -30.61 51,27

-1.31 -1.41 —-1.24 -1.33 -1.28

—2.32 —-2.45 -2.00 -1.75 -2.18

10 35 24 16 34

-15.45 —49.95 —32.42 -19.07 —46.26

~1.54 -1.43 -1.35 -1.19 -1.36

-1.92 —1.58 —-2.32 ~2.30 —1.56

40 34 28 49 34

—51.02 —41.76 —38.45 —70.29 —41.96

—1.28 —1.23 ~1.37 -1.43

~2.82 -3.67 -2.85 -3.02 -2.94

17 33 28 31 37

—24.64 -55.19 —40.14 —48.60 —55.32

-1.45 -1.67 —1.43 -1.57 -1.50

-1.64 -2.20 —-1.74 ~-1.72 -2.23 -1.73 —-1.75

34 22 33 31 27 27

—44.12 —29.45 —43.87 —42,99 —32.08 -37.65 -39.35

-1.30 —1.34 -1.33 —1.39 —1.34 —1.39 —1.46

-1.73 -1.85 -1.97 -1.76 -1.86 —1.81 -1.76

33 18 35 30 18 33 26

—42.79 -23.18 —46.09 —40.50 —23.06 —43.30 -37.44

-1.30 -1.29 -1.32 -1.35 -1.28 -1.31 -1.44

—1.86 -1.79 —1.52 —1.73 —1.81 —1.62 -1.76

30 30 27 29 36 26 24

—40.15 —37.08 —34.67 -38.37 —44.94 -33.72 —33.10

-1.34 -1.24 -1.28 -1.32 -1.25 —1.30 —1.38

-2.61 -2.23 -2.44 -2.27 -2.15 —2.44 -2.19

34 21 32 32 18 33 28

—46.99 —28.39 -52.92 ~45,61 —24.26 ~53.93 -39.03

-1.38 -1.35 -1.65 ~1.43 -1.35 -1.63 -1.39

10
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Fig. 7. Projected river discharge against historical data (FF: Far Future, NF: Near Future).

change scenarios do not necessarily show severe conditions in the
future.

4. Discussion
4.1. River discharge simulations

The data-driven methods in river discharge simulations in other
studies also have shown high accuracy. By employing five different data-
driven methods, tried to simulate monthly river
discharge in mountainous areas of Pakistan and reported that these
methods have high accuracy in runoff simulations. However, in another
study in Iran, ANN, compared to SWAT and IHACRES, did not perform
well in runoff simulations ( ). Similar to our re-
sults, , in a study area in Turkey, approved that data-
driven methods (i.e., ANN, ANFIS, and GEP) are valuable and accurate
tools in runoff simulations. However, it should be mentioned that these
methods suffer from the disability of capturing anthropogenic changes
in a basin, and it could be expected that these methods perform better in
natural basins (without agricultural activities or hydraulic structures).
Conversely, we cannot rely on these methods in complex and managed
basins. Our study showed that ANN had superior performance in
discharge simulation in a lowland catchment compared to a moun-
tainous catchment. This finding adds a new dimension to the existing
knowledge on the effectiveness of ANN in hydrological modeling and
highlights the influence of catchment characteristics on model perfor-
mance. The current results prove our hypothesis that ANN has accept-
able accuracy in runoff simulations.

4.2. Hydrological drought simulations

The utilization of data-driven methods in hydrological drought
simulations has demonstrated satisfactory levels of accuracy.
simulated different drought indicators with the
direct approach using three data-driven methods (SVR, GEP, and MT) in
a basin in Iran. The current study has similar results to their research
regarding correlation and RMSE performance indicators.
attempted to forecast hydrological drought directly in a basin in

11

Iran by employing ANN. In their study, similar to the current study, SPI
was used as a predictor of the Standardized Hydrological Drought Index
(SHDI) in different time scales, and ANN showed similar results to our
study. In other studies, which are described in , the
data-driven methods have very close results, in terms of performance
indicators, to the current research. However, the direct approach has
been used in all of the mentioned studies. Moreover, the first and second
hypotheses of the current study can be accepted based on the results.

According to our results, indirect simulations of hydrological
drought have a higher accuracy than the direct approach. It should be
mentioned that since the accuracy of the indirect approach in hydro-
logical drought simulations is based on runoff simulations, the higher
runoff simulation accuracy leads to higher accuracy in hydrological
drought simulations. Using the same predictors (precipitation, temper-
ature, and SPI) in both approaches did not deliver a similar accuracy in
hydrological drought simulations, and the indirect approach performed
better. Thus, our third hypothesis is rejected.

4.3. Hydrological drought projections

Based on the projected hydrological droughts, two different results
again reject our third hypothesis. Based on the projected indicators, all
of the considered climate change scenarios indicate a slightly worsened
outcome compared to the historical period when using the indirect
approach. In contrast, the direct approach shows significant changes in
hydrological drought projections compared to the historical period. The
indirect approach rejects our fourth hypothesis, but the direct approach
suggests that under the RCP8.5 climate change scenario, more severe
droughts and more extended periods of hydrological drought, based on
the run theory, can be expected. The accuracy of drought indicator
simulations based on the direct approach are in agreement with

; however, in their study, hybrid drought index (HDI) was
employed to assess the effect of climate change on hydrological drought
using ANN.

In the projected results, it can be seen that the results are inconsistent
with the scenarios. According to common expectations, more severe
droughts can be expected in dry and warm conditions. However, among
the projected drought indicators, there is no huge difference or visible
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pattern between the three different climate change scenarios, in both
approaches. However, differences in river discharge simulations are
visible, and a time shift in peak river discharge occurrence is estimated.
Though, Piniewski et al. (2017a), in the same basin and using the SWAT
model (a process-based model), have shown that under the climate
change scenarios peaks in runoff can be expected to happen earlier
(snowmelt peaks occur earlier). In our study, in two discharge stations
(stations A and C) runoff peaks happen later relative to the historical
period.

4.4. Limitations and suggestions
Based on the current results, we would like to recommend more in-

vestigations between indirect and direct approaches in various climatic
regions. In the previous studies, according to our best knowledge, only
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the direct approach was used; however, data-driven methods were
extensively used in runoff simulations, but calculating hydrological
drought indicators as an indirect result is not considered. The impor-
tance of this comparison is visible in projections of hydrological drought
indicators.

One of the limitations of this study is the selection of a relatively
short 20-year period for the analysis of river discharge data and the
simulation of hydrological drought indicators. This limitation arose due
to data management issues. However, in order to assess this limitation,
the calculations were repeated using a longer period of 30 years for
discharge station A, which represents the basin’s outlet. Both ap-
proaches produced very similar results to the current findings in terms of
both simulations and projections. Nonetheless, it is worth noting that the
literature suggests that utilizing longer periods would likely lead to more
robust results (Prodhan et al., 2022), and employing artificial neural
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networks (ANN) may offer better detection of patterns in river discharge
and hydrological drought.

The ORB is located in a cold and humid temperate region, in which
agricultural activities are based on rainfed farming; consequently, water
withdrawals from rivers for irrigation are close to zero, and flow con-
ditions in rivers are only slightly modified, mainly due to existing res-
ervoirs. We believe that applying these approaches in other regions can
improve our understanding of the application of data-driven methods in
hydrological drought simulations and projections. In addition, a com-
parison between different data-driven methods could be interesting for
further analyses.

One of the limitations of our study is that we have used only
maximum and minimum temperature and precipitation as climatic
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predictors since these parameters are most easily accessible from GCMs
for climate change scenarios. We would like to suggest employing cli-
matic parameters (such as solar radiation, humidity, and wind speed),
remotely-sensed drought factors and potential evapotranspiration (PET)
as predictors to have a more robust model (Al et al., 2018; Feng et al.,
2019). Moreover, other drought indicators such as SPEI also could be
used instead of SPI in future studies.

The objective of this study was to show that ANN can be used to
project droughts in this region as an alternative to other techniques,
instead of studying the projected changes (e.g. derived using a process-
based models) in ORB. Thus to have a more robust results, using
Regional Climate Models (RCMs) for projecting climatic variables can be
suggested instead of GCMs. In addition, applying new GCMs based on



M.R. Eini et al.

CMIP6 can present different climatic scenarios and, consequently,
different projections of hydrological drought. Using full climate model
ensembles instead of selecting representative GCMs could also be rec-
ommended to increase the robustness of climate change impact
assessment.

Comparing these approaches with a process-based approach (such as
process-based hydrological models) could deliver a broader vision to
understanding hydrological drought assessments and projections,
especially in detecting differences between climatic scenarios (in hy-
drological process-based models, more complicated and nonlinear re-
lations between objects are available ( ).

5. Conclusion

The study investigated the efficiency and application of ANN in
simulations and projections of river discharge and hydrological drought
(SRI) in the Odra River Basin in Central Europe. Four river discharge
stations were selected within the basin, and SRI-3 as a short-term
drought indicator, SRI-6 and SRI-9 as mid-term drought indicators,
and SRI-12 as a long-term indicator were simulated and projected. Two
different approaches (the direct approach and the indirect approach)
were employed. The direct approach simulated hydrological drought
and projected directly from precipitation, maximum and minimum
temperature, and SPI-1 to SPI-12 (meteorological drought indicators). In
the indirect approach, we first simulated and projected river discharge,
and then hydrological drought was calculated. To achieve projected
precipitation and temperature for the near future (2021-2040) and the
far future (2041-2060) under the worst scenario (RCP8.5), four GCMs
(based on CMIP5) grouped into three scenarios (moderate, warm and
dry, and warm and wet). Our results can be concluded as the following
points:

e ANN has high performance in simulations of hydrological drought
and river discharge in terms of KGE, RMSE, PBIAS, and RZ

e ANN performance in discharge and hydrological drought simulation
is significantly higher in a lowland than in a mountainous catchment.

e The indirect approach performed better in hydrological drought
simulations since it performed well in river discharge simulations.

e Projections of hydrological drought have major differences in two
approaches.

e There are no detectable patterns in hydrological drought projections
based on climate change scenarios. This means that ANN results are
not linear in terms of lower precipitation or higher temperature
leading to more severe and long periods of drought, and thus, they
behave differently than process-based models.
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